© The Authors, 2025, Published by the Universidad del Zulia
*Corresponding author: selenne.mg@torreon.tecnm.mx
Keywords:
Silicon oxide nanoparticles
Chitosan
Cucumis sativus L.
Nutraceutical quality
Nanoparticles that stimulate the production and quality of cucumber fruits (Cucumis sativus L.)
Nanopartículas que estimulan la producción y calidad de frutos de pepino (Cucumis sativus L.)
Nanopartículas que estimulam a produção e a qualidade de frutos de pepino (Cucumis sativus L.)
Juan José Reyes-Perez
1*
Rommel Arturo Ramos-Remache
1
Eduardo I. Jerez Mompie
2
René Nazareno-Ortiz
3
Kevin Patricio Murillo-Noboa
4
José Luis García- Hernández
5
Selenne Yuridia Márquez-Guerrero
6*
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254243
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v42.n3.XIV
Crop production
Associate editor: Dr. Jorge Vilchez-Perozo
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
1
Universidad Técnica Estatal de Quevedo. Av. Quito. km 1 ½
vía a Santo Domingo,Quevedo, Los Ríos, Ecuador.
2
Instituto Nacional de Ciencias Agrícolas, Carretera San
José-Tapaste, Km 3½, San José de Las Lajas, Mayabeque,
Cuba.
3
Universidad Técnica “Luis Vargas Torres” de Esmeraldas.
Extensión San Mateo – Mutile. Nuevos Horizontes.
Esmeralda, Ecuador.
4
Universidad de las Fuerzas Armadas ESPE. Extensión Santo
Domingo. Vía Santo Domingo -Vía Quevedo Km.24 Hda.
Zoila Luz. Avenida Quevedo 3-703-904, Santo Domingo,
Ecuador.
5
Universidad Juárez del Estado de Durango. Ej. Venecia,
Gómez Palacio, Dgo. C.P. 35000, México.
6
Instituto Tecnológico de Torreón, Tecnológico Nacional
de México. Carr. Torreón-San Pedro km 7.5, Ejido Ana.
Torreón, Coahuila, CP 27170, México.
Received: 01-07-2025
Accepted: 25-08-2025
Published: 15-09-2025
Abstract
Due to the high consumption of cucumber (Cucumis sativus
L.) and its economic importance, improving resource eciency
is a priority to maximize yields. The combination of silicon oxide
(SiO
2
), chitosan, and micronutrients are benecial for plant growth
and development. The objective of this study was to determine
the inuence of micronutrient- provided SiO
2
nanoparticles
encapsulated in a chitosan gel on the growth, yield, and quality of
cucumber fruits. The study was conducted in a cultivation house,
where three concentrations of silicon nanoparticles and a control
were evaluated in a randomized block design with four replicates.
Plant growth (height and stem diameter), days to owering, number
of fruits per plant, yield, and fruit quality were evaluated. Foliar
application of Si-NPs promoted greater plant growth at the highest
concentration (2,000 mg.L
-1
), as well as improved the nutraceutical
quality of cucumber fruits by increasing the contents of antioxidants,
avonoids, phenols and total soluble solids.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254243 -XO\6HSWHPEHU. ISSN 2477-9409.
2-6 |
Resumen
Debido al alto consumo de pepino (Cucumis sativus L.) y su
relevancia económica, es prioritario mejorar la eciencia en el uso de
recursos para maximizar los rendimientos. La combinación de óxido
de silicio (SiO
2
), quitosano y micronutrientes, son beneciosos para
el crecimiento y desarrollo de las plantas. El objetivo del presente
trabajo fue determinar la inuencia de nanopartículas de SiO
2
provistas con micronutrientes, encapsuladas en un gel de quitosano,
en el crecimiento, rendimiento y calidad de los frutos de pepino. Se
desarrolló en casa de cultivo donde se evaluaron tres concentraciones
de nanopartículas de silicio y un control, en un diseño de bloques al
azar con cuatro réplicas. Se realizaron evaluaciones del crecimiento
de las plantas (altura y diámetro del tallo), días transcurridos hasta la
oración, número de frutos por planta, rendimiento y calidad de los
frutos. La aplicación foliar de NPs-Si, permitió un mayor crecimiento
de las plantas con la concentración más alta (2.000 mg.L
-1
), así como
mejoró la calidad nutraceútica de los frutos de pepino al incrementar
los contenidos de antioxidantes, avonoides, fenoles y sólidos
solubles totales.
Palabras claves: nanopartículas de óxido de silicio, quitosano,
Cucumis sativus L. y calidad nutraceútica.
Resumo
Devido ao alto consumo de pepino (Cucumis sativus L.) e sua
importância econômica, é prioritário melhorar a eciência no uso
de recursos para maximizar os rendimentos. A combinação de óxido
de silício (SiO
2
), quitosana e micronutrientes é benéca para o
crescimento e desenvolvimento das plantas. O objetivo deste trabalho
foi determinar a inuência de nanopartículas de SiO
2
dopadas com
micronutrientes, encapsuladas em gel de quitosana, no crescimento,
produtividade e qualidade de frutos de pepino. Foi desenvolvido
em casa de cultura onde foram avaliadas três concentrações de
nanopartículas de silício e uma testemunha, em delineamento de
blocos casualizados com quatro repetições. Foram feitas avaliações
do crescimento das plantas (altura e diâmetro do caule), dias até a
oração, número de frutos por planta, produtividade e qualidade dos
frutos. A aplicação foliar de Si-NPs promoveu maior crescimento das
plantas na maior concentração (2.000 mg.L
-1
), além de melhorar a
qualidade nutracêutica dos frutos de pepino, aumentando os teores de
antioxidantes, avonoides, fenóis e sólidos solúveis totais.
Palavras-chave: nanopartículas de óxido de silício, quitosana,
Cucumis sativus L. e qualidade nutracêutica.
Introduction
The cucumber (Cucumis sativus L.) is a widely distributed
vegetable with high demand in national and international markets,
giving it considerable economic and nutritional importance (Allard
et al., 2020). Its yield depends on genetic material, climate and
agronomic management (Erreyes et al., 2023; Rivera et al., 2021).
Nutrient deciencies, caused by the low availability of essential
elements such as nitrogen, phosphorus, potassium, and micronutrients,
aect its development and reduce productivity (Guillén et al., 2022).
The use of biostimulants seeks to improve crop quality and yield,
considering the soil as a living ecosystem (Paris et al., 2021), while
the combination of silicon oxide (SiO₂), chitosan and micronutrients
has shown positive eects on plant growth. SiO₂ strengthens cell
walls, while chitosan stimulates immunity and root development.
Micronutrients such as iron, zinc and manganese are essential for
key metabolic processes (Velásquez et al., 2019). In addition, silicon
nanoparticles facilitate the controlled release of nutrients (Rastogi et
al., 2019).
The aim of this study is to evaluate the inuence of micronutrient-
enriched SiO₂ nanoparticles encapsulated in chitosan gel on the
growth, yield and quality of cucumber fruits.
Materials and methods
The research was conducted in the greenhouse of the ‘La María’
Experimental Campus located at km 7.5 of the Quevedo–Mocache
road in the Mocache canton, Los Ríos province, Ecuador, at
1°04’48.6‘ south latitude and 79°30’04.2’ west longitude, with an
altitude of 75 m. The average annual temperature is 24 °C, with 84 %
relative humidity and average annual precipitation of 2295 mm. The
soil has a loamy texture with 32 % sand, 48 % silt and 20 % clay, with
an average organic matter content of 3.9 %. Table 1 details the soil
analysis carried out.
Table 1. Soil nutritional status.
ppm meq.100 mL
-1
ppm
pH
NH
4
P K Ca Mg S Zn Cu Fe Mn B
6.0 11.0 27.0 0.16 10.0 0.8 20.0 5.8 6.8 216.0 5.0 0.62
A randomised block design with four treatments and four
replicates was used, employing chemically synthesised silicon oxide
nanoparticles (Si-NPs) at concentrations of 1,000, 1,500 and 2,000
mg.L
-1
(average diameter of 34 nm and purity of 99.9 %) applied
via foliar application 12 and 25 days after transplanting (DAT) and a
control treatment with distilled water only.
The Si-NPs were enriched with 0.025 % Co, 0.025 % B, 0.025
% Mo, 0.35 % Mg, 0.15 % Fe, 0.15 % Cu, 0.10 % Mn, 0.25 % Zn,
0.35 % Ca and 0.20 % S, and coated in a commercial chitosan matrix
(N:P:K, 15:15:15).
The experimental unit consisted of 10 plants of the Diamante F1
cultivar, transplanted when they had three true leaves into 10-litre pots
with previously characterised soil and cattle compost as substrate,
in a 3:1 ratio, duly homogenised. One plant was placed per pot at a
planting frame of 0.40 m between plants and 1.0 m between rows.
Irrigation was programmed to meet the crop’s evapotranspiration
demand, using a localised drip system with a ow rate of 1.5 L.h
-1
and an estimated total irrigation depth of 175 cm for the cucumber
production cycle (Rivera-Fernández et al., 2021).
Staking was carried out with double wires on stakes, and weekly
pruning was performed to remove old, diseased leaves or side shoots,
favouring the development of the main stem.
Growth assessments
Ten plants were randomly selected per treatment and replicate
to assess stem height and diameter at 45 and 60 days after sowing
(DAS). Height was measured from ground level to the bud using a
exometer, while stem diameter was measured at a distance of ve
cm from the ground using a Mitutoyo 530 digital vernier caliper. The
onset of owering was determined when 70 % of the owers were
open.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Reyes-Perez et al. Rev. Fac. Agron. (LUZ). 2025, 42(4): e254243
3-6 |
Figure 2. Stem diameter (mm) at two points after sowing. Dierent
letters above the bars indicate signicant dierences between
treatments at p≤0.05, according to Tukeys test.
Yield and some of its components
The number of fruits per plant in each treatment was counted and
weighed, and the size of the fruits was determined by measuring their
length (cm) from the apical bud to the basal bud with a exometer and
their diameter (cm) with a calibrator. Yield was estimated based on
the fresh weight of fruit per plant and the number of plants possible
per hectare, expressed in t.ha
-1
.
Nutraceutical quality of the fruit
Five fruits per treatment and replicate were extracted to determine
the variables: avonoid content, polyphenol antioxidant capacity,
and total soluble solids (TSS), as reported by Zhishen, et al. (1999);
Henriquez, et al. (2002); and Singleton, et al. (1999).
Statistical analysis
Analysis of variance was performed to detect eects of the factors
under evaluation on the dependent variables. When signicant eects
were detected, a Tukey test was applied at p 0.05 using the SPSS
v.24 statistical programme, and the results were plotted using the
SigmaPlot v.14 programme.
Results and discussion
The plant height (gure 1) did not show a signicant dierence
at 45 DAS, but did at 60 DAS, where a longer period of time had
elapsed since the application of the biostimulant, obtaining dierent
responses to the control.
Figure 1. Plant height (m) at two points in time after sowing.
Dierent letters above the bars indicate signicant
dierences between treatments at p≤0.05, according to
Tukey’s test.
This increase in height over the control (gure 1) can be explained
by the fact that Si is considered benecial for plant growth (Yan et
al., 2024), acting on photosynthetic capacity, reducing the rate of
transpiration, and providing greater resistance to biotic and abiotic
stress, among other known actions (Canuto et al., 2021).
The stem diameter (Figure 2) showed a similar behaviour to that
achieved in the height growth variable, where the control treatment
obtained the lowest values. However, there were no dierences in Si-
NPs concentrations or in DAS in the initial stages (gure 2).
The percentage increase in stem diameter, compared to the control,
reached a value of 15 % in the treatment with the highest concentration,
as a result of the use of silicon enriched with micronutrients and
chitosan, elements that constitute a powerful stimulator of plant
growth in general, as indicated by Chagas et al., (2022) and Jin et al.,
(2024). The eect of silicon in mitigating water stress conditions in
plants is well documented (Morteza et al., 2020); however, the results
of this study show that, under controlled conditions, silicon promotes
plant growth. Furthermore, Si, in combination with Ca, Mg, Fe, Zn,
and Mo, signicantly improved crop development (Kovács et al.,
2022), resulting in taller plants with a larger diameter, among other
growth variables (Reyes-Pérez et al., 2024).
The biostimulants in this research did not modify the phenological
behaviour of the cucumber plants, assessed based on the analysis of
days from sowing to owering (gure 3).
Figure 3. Time in days until owering. Dierent letters above the
bars indicate signicant dierences between treatments at
p≤0.05, according to Tukey’s test.
It is important to understand the phenology of cucumber plants in
order to establish expert systems for agricultural problems (Laguna et
al., 2024), especially with the use of biostimulants.
The highest number of fruits per plant (gure 4) was obtained
in the treatment with the highest concentration of Si-NPs, with an
average of three fruits, with no signicant dierences between
treatments and the control, which had an average of two fruits per
plant, similar to that reported by Reyes-Perez et al. (2024).
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254243 July-September. ISSN 2477-9409.
4-6 |
Figure 4. Number of fruits per plant at harvest. Dierent letters
above the bars indicate signicant dierences between
treatments at p≤0.05, according to Tukey’s test.
modify the physiological processes of plants, such as photosynthesis,
and observed that uncoated Si-NPs, at a dose of 1000 ppm, have a
negative eect on the biomass production of cucumber plants, which
resulted in slower growth.
On the other hand, it has been indicated that Si NPs, due to
their nanometric size, present problems of stability and dispersion
(Pérez-Velasco et al., 2020), which could aect their eciency as
nanofertilisers. However, this problem is reduced by using a coating
or encapsulation (Kolbert et al., 2022), as used in this research, where
Si NPs are coated with microelements in a chitosan matrix.
Therefore, the yield results of the treatments with Si-NPs (Figure
6) showed a higher response (> 40 t.ha
-1
) compared to the control
(<30 t.ha
-1
), although the two lowest concentrations reached similar
values.
Figure 6. Yield (t.ha
-1
). Dierent letters above the bars indicate
signicant dierences between treatments at p≤0.05,
according to Tukey’s test.
The above conrms that nanoparticles have a biostimulant
eect, improving the yield of cucumber plants (Ucan et al., 2023).
In addition, nanoparticle formulations containing chitosan result
in sustainable agricultural practices (Karamchandami, et al., 2024)
because it is a non-toxic biodegradable biopolymer derived from
chitin, which has unique properties including a large contact surface
area, positive charge and biocompatibility, making them very suitable
for a wide range of applications in agriculture (Saberi et al., 2024).
The quality of the fruits (gure 7), evaluated based on the analysis
of phytochemical variables, conrms the eect of Si NPs on their
behaviour.
The highest values correspond to the treatments in which the NP-
Si-based biostimulant was sprayed, compared to the control, although
the lower concentrations in TSS (Figure 7D) did not show signicant
dierences between them. The contents of the four variables were
generally lower when compared to those indicated by Reyes-Pérez, et
al., (2024), including the control, which may have been inuenced by
the fact that the substrate was not similar. The increase in the amount
of antioxidants, as well as the rest of the compounds evaluated,
improves fruit quality, as pointed out by various authors in other crops,
which in turn is the result of increases in the amount of avonoids and
polyphenols (Insanu et al., 2022). In tomatoes, silicon applications
increased the amount of TSS (Cázarez-Flores, et al., 2023), as well
as in melons (Rivera-Gutiérrez et al., 2021). According to Picos et al.
This is related to the timing of foliar applications, as these depend
on the plant species, its phenology and the required concentration
(Rivera-Gutiérrez et al., 2021, Galindo-Guzmán et al., 2022).
Despite the importance of Zn in crop nutrition, studies on the
eect of ZnO NPs on plants are limited (Tymoszuk and Wojnarowicz,
2020). However, Quirino-García et al. (2024) found that foliar
spraying with zinc nanostructures was an alternative source of
fertilisation that improved the growth and biomass production of
cucumber seedlings grown in greenhouses.
When analysing the dimensions of the fruits in terms of diameter
and length (gure 5), it was found that the application of Si NPs had
a stimulating eect, as both variables were signicantly higher than
the control.
Figure 5. Fruit size (cm) evaluated by diameter and length.
Dierent letters above the bars indicate signicant
dierences between treatments at p≤0.05, according to
Tukey’s test.
As shown in gure 5, the diameter and length of the control fruits
were smaller (10 and 12 % respectively) in contrast to the fruits treated
with Si-NPs, results that highlight the inuence of the treatments.
Farouk 2023 points out that plant biostimulants have the ability to
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Reyes-Perez et al. Rev. Fac. Agron. (LUZ). 2025, 42(4): e254243
5-6 |
(2023), chitosan treatments act as an elicitor of secondary metabolism
in plants in general, while increases in phenol content are largely due
to the fact that the synthesis of this compound is increased by the
eect of chitosan application (Sanwam et al., 2023).
In general, it has been noted that the application of nanotechnology
in the agricultural sector (Tejeda-Villagómez, et al., 2023) is a
promising tool. This science is driving the development of a range of
innovative applications and products for the benet of agriculture, as
well as its use in the production of medicinal plants (Sun et al., 2023).
In the case of Si NPs, these appear to be an excellent alternative for
reducing the use of agrochemicals, as well as being eective systems
for administering nutrients and chemical compounds to plants and
crops of agricultural interest.
Furthermore, the integration of nanotechnology into agriculture
represents a signicant advance in improving the eciency and
sustainability of food production. This advance not only contributes
to global food security, but also promotes more sustainable and
environmentally friendly agricultural practices (Navarro-López et
al., 2025).
Conclusions
The foliar application of Si-NPs, enriched with dierent
microelements in a chitosan gel matrix, promoted greater plant growth at
the highest concentration (2,000 mg.L
-1
) and increased the nutraceutical
quality of cucumber fruits by increasing the phytochemical compounds
of antioxidants, avonoids, phenols and total soluble solids.
Literature cited
Allard, S.M., Ottesen, A.R., and Micallef, S.A. 2020. Rain induces temporary
shifts in epiphytic bacterial communities of cucumber and tomato fruit.
Scientic Reports, 10(1), 1765. DOI: https://doi.org/10.1038/s41598-020-
58671-7.
Canuto, L., Mendes, G.A., de Oliveiram, M., Araújo, J.L., Trotsk, S., Santos,
M.D., Ribeiro, V.G., da Silva, J., Lopes, C., y Queiroga, F. 2021. O
papel do silício nas plantas. Research, Society and Development, 10, 7:
e3810716247. DOI: https://dx.doi.org/10.33448/rsd-v10i7.16247.
Cázarez-Flores, L.L., Angulo-Castro, A. Vega-Gutiérrez, T.A., Ayala-Tafoya, F.,
and Aguilar-Quiñonez, J.A. 2023. Producción de tomate en respuesta a
dosis de silicio. Ecosistemas y Recursos Agropecuarios 10(3): e3851.
DOI: 10.19136/era.a10n3.3851.
Chagas, Y., Herrera, O., y Pereira, E. 2022. Uso da quitosana na agricultura: uma
revisão com ênfase na aplicação em sementes. Research, Society and
Development, 11(2), e39911225782. DOI: https://dx.doi.org/10.33448/
rsd-v11i2.25782.
Erreyes, B., Montoya, J., y Luna-Romero, E. (2023). Rendimiento del cultivo de
pepino (Cucumis sativus L.) bajo condiciones de mulch plástico, Ecuador.
Revista Cientíca Agroecosistemas, 11(1), 44-51. https://aes.ucf.edu.cu/
index.php/aes/index.
Farouk S (2023). Role of biostimulants in plant’s life cycle. In Biostimulants in
Alleviation of Metal Toxicity in Plants (pp. 75-106). Academic Press.
DOI: 10.1016/B978-0-323-99600-6.00010-4.
Galindo-Guzmán AP, Fortis-Hernández M, De La Rosa-Reta CV, Zermeño-
González H, Galindo-Guzmán L (2022). Síntesis química de
nanopartículas de óxido de zinc y su evaluación en plántulas de Lactuca
sativa. Revista Mexicana de Ciencias Agrícolas 13: 299-308. https://doi.
org/10.29312/remexca.v13i28.3284.
Guillén, R., Zuñiga, L., Ojeda, L., Rivas, T., Trejo, R., y Preciado, P. 2022. Efecto
de la nanobioforticación con hierro en el rendimiento y compuestos
bioactivos en pepino. Revista Mexicana de Ciencias Agrícolas, 13(28),
173-184. https://doi.org/10.29312/remexca.v13i28.3272.
Henriquez, C., Aliaga, C., and Lissi, E. 2002. Formation and decay of the ABTS
derived radical cation: A comparison of dierent preparation procedures.
International Journal of Chemical Kinetics 34(12):659-665. https://doi.
org/10.1002/kin.10094.
Insanu, M., Azkia-Zahra, A, Sabila, N., Silviani, V., Haniadli, Ariranur.,
Rizaldy, D., and Fidrianny, I. 2022. Phytochemical and Antioxidant
Prole: Cucumber Pulp and Leaves Extracts. Open Access Macedonian
Journal of Medical Sciences 10(A):616-622..https://doi.org/10.3889/
oamjms.2022.8337.
Jin, W., Li, L., He, W., and Wei, Z. 2024. Application of Silica Nanoparticles
Improved the Growth, Yield, and Grain Quality of Two Salt-Tolerant
Rice Varieties under Saline Irrigation. Plants, 13, 2452. https:// doi.
org/10.3390/plants13172452.
Karamchandani, B.M., S. Dalvi, M. Bagayatkar, I.M. Banat. and S.K.
Satpute. 2024. Prospective applications of chitosan and chitosan-
based nanoparticles formulations in sustainable agricultural practices.
Biocatalysis and Agricultural Biotechnology, 58:103210. https://doi.
org/10.1016/j.bcab.2024.103210
Kolbert, Z., Szollosi, R., Rónavári, A., and Molnár, Á. 2022. Nanoforms of essential
metals: from hormetic phytoeects to agricultural potential. Journal of
Experimental Botany, 73(6),1825-1840.
https://doi.org/10.1093/jxb/
erab547.
Kovács, S., Kutasy, E. and Csajbók, J. 2022. The multiple role of silicon nutrition
in alleviating environmental stresses in sustainable crop production.
Plants, 11(9), 12-23. https://doi.org/10.3390/plants11091223.
Laguna-Estrada, M., Ramírez-Pérez, N.V., Araujo-Rodríguez, J.A. y Rubín-
Ramírez, N.N. 2024. Un breve resumen sobre la implementación de los
sistemas expertos en problemas de agricultura. Research in Computing
Science, 153(9), 239-245. https://rcs.cic.ipn.mx.
Morteza, S., Moharrami, F., Sarikhani, S., and Padervand, M. 2020. Selenium
and silica nanostructurebased recovery of strawberry plants subjected
to drought stress. Scientifc Reports, 10:17672. https://doi.org/10.1038/
s41598-020-74273-9.
Navarro-López, N.E., González-Torres, A.M., Pérez-Pérez, A.E., Morales-
Mazariego, N., y González-Moscoso, M. 2024. Nanotecnología en la
agricultura: Innovación para la producción sostenible de alimentos.
Azcatl, 3, 23-27. doi: 10.24275/AZC2024B005
Paris, L., López, H., Medina, R., y Pérez, I. 2021. Efecto de bioestimulantes sobre el
crecimiento de la Vainilla Tahitensis en Daule, Ecuador. Revista Cientíca
Ecociencia, 8(6), 1-14. https://doi.org/10.21855/ecociencia.86.570.
Pérez-Velasco, E.A., Betancourt-Galindo, R., Valdez-Aguilar, L.A., González-
Fuentes, J.A., Puente-Urbina, B.A., Lozano-Morales, S.A., and Sánchez-
Valdés, S. 2020. Eects of the morphology, surface modication and
application methods of ZnO-NPs on the growth and biomass of tomato
plants. Molecules, 25(6), 1282.DOI:10.3390/ molecules25061282.
Picos-Corrales, L. A., Morales-Burgos, A.M., Ruelas-Leyva, J.P., Crini, G.,
García-Armenta, E., Jimenez-Lam, S.A., Ayón-Reyna, L.E., Rocha-
Alonzo, F., Calderón-Zamora, L., Osuna-Martínez, U., Calderón-Castro,
A., De-Paz-Arroyo, G., and Inzunza-Camacho, L.N. 2023. Chitosan as
an outstanding polysaccharide improving health-commodities of humans
and environmental protection. Polymers 15:526 https://doi.org/10.3390/
polym15030526.
Quirino-García, A., Martínez-Alonso, C., Sabino-López, J.E., Espinosa-
Rodríguez, M., Vázquez-Villamar, M., y Maldonado-Peralta, M.Á. 2024.
Aspersión foliar de nanoestructuras con zinc en plántulas de pepino
(Cucumis sativus L.). Ecosistemas y Recursos Agropecuarios IV: e4095.
DOI: 10.19136/era.a11nIV.4095.
Rastogi, A., Kumar-Tripathi, D., Yadav S., Kumar-Chauhan, D., and Živčák,
M., Ghorbanpour, M., El-Sheery, N.I., y Brestic, M. 2019. Application
of silicon nanoparticles in agriculture, Biotechnology, 3, 9-90. DOI:
10.1007/s13205-019-1626-7.
Figure 7. Nutraceutical quality of fruits, polyphenols (A),
avonoids (B), antioxidants (C) and total soluble solids
(D). Dierent letters above the bars indicate signicant
dierences between treatments at p≤0.05, according to
Tukey’s test.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254243 July-September. ISSN 2477-9409.
6-6 |
Reyes-Pérez, J.J., Llerena-Ramos, L.T., Torres-Rodriguez, J.A., Hernández-
Montiel, L.G., Macías-Pettao, R.K., Aragón-Sánchez, E., y Palacios-
Espinosa, A. 2024. Silicio como bioestimulante en el cultivo del pepino
(Cucumis sativus L.). Tropical and Subtropical Agroecosystems, 27, art.
123. https://doi.org/10.56369/tsaes.5359.
Rivera-Fernández, R.D, Pinos, H., Saltos, M., Bósquez, A., Camposano, C., y
Verdezoto, C. 2021. Efecto del riego decitario aplicado en etapa inicial
del cultivo de pepino (Cucumis sativus L.) en un suelo franco. Revista
Ciencia y Tecnología, 14(1), 55-60. DOI:https://doi.org/10.18779/cyt.
v14i1.459.
Rivera-Guetierrez RG, Preciado-Rangel P, Fortiz-Hernández M, Betancourt-
Galindo R, Yescas-Coronado P, Orozco-Vidal JA (2021) Nanopartículas
de óxido de zinc y su efecto en el rendimiento y calidad de melón. Revista
Mexicana de Ciencias Agrícolas 12: 791-803. https://doi.org/10.29312/
remexca.v12i5.2987.
Saberi, R., Vatankhah, M., Hassanisaadi, M., and Varma, R.S. 2024. A review
of chitosan nanoparticles: Nature’s gift for transforming agriculture
through smart and eective delivery mechanisms. International Journal
of Biological Macromolecules, 60(2):129522. https://doi.org/10.1016/j.
ijbiomac.2024.129522.
Sangwan, S., P. Sharma, L. Wati and S. Mehta. 2023. Eect of chitosan
nanoparticles on growth and physiology of crop plants. Engineered
nanomaterials for sustainable agricultural production, soil improvement
and stress management Chapter 4, 99-123. Eds: Azamal Husen. Wolaita
Sodo University, Wolaita, Ethiopia. https://doi.org/10.1016/C2021-0-
00054-7
Singleton, V.L., Orthofer, R., and Lamuela, R.M. 1999. Analysis of total phenols
and other oxidation substrates and antioxidants by means of folin-ciocalteu
reagent. Methods Enzymol. 299:152-178. https://doi.org/10.1016/S0076-
6879(99)99017-1
Sun, W., Shahrajabian, M.H., Petropoulos,S.A., and Shahrajabian, N. 2023.
Developing Sustainable agriculture systems in medicinal and aromatic
plant production by using chitosan and chitin-based biostimulants. Plants,
12(13), 24-69. DOI: https://doi.org/10.3390/plants12132469
Tejeda-Villagómez, E.A., Hernández-Adame, L., Nieto-Navarro, F., and Anzaldo-
Montoya, M. 2023. Nanopartículas de silicio como vehículos de transporte
para moléculas de interés agrícola. Mundo Nano, 16(30), 1e-20e. https://
doi.org/10.22201/ceiich.24485691e.2023.30.69732.
Tymoszuk A, Wojnarowicz J (2020) Zinc oxide and zinc oxide nanoparticles
impact on In vitro germination and seedling growth in Allium Cepa L.
Materials 13: 2784. https://doi.org/10.3390/ma13122784.
Ucan-Tucuch, O., Betancourt-Galindo, R., Juárez-Maldonado, A., Sánchez-
Vega, M., Sandoval-Rangel, A., y Méndez-López, A. 2023. Efecto
de maltodextrinay nanoparticulas de óxido de zinc sobre biomasa y
rendimiento en pepino. Ecosistemas y Recursos Agropecuarios, 3, e3699.
DOI:10.19136/era.a10nIII.3699.
Velásquez, L., Pirela, L., Chirinos, A., y Avelizapa, I. 2019. Nuevos retos en
agricultura para los biopolìmeros de quitina y quitosano. Parte 1: efectos
beneciosos para los cultivos. Revista Iberoamericana de Polímeros,
20(3), 118-136. eviberpol.org/2019/05/01/nuevos-retos-en-agricultura-
para-los-biopolimeros-de-quitina-y-quitosano-1-efectos-beneficiosos-
para-los-cultivos/
Yan, G., Huang, Q., Zhao, S., Xu, Y., He, Y., Nikolic, M., Nikolic, N., Liang,
Y., and Zhu, Z. 2024. Silicon nanoparticles in sustainable agriculture:
synthesis, absorption, and plant stress alleviation. Front. Plant Sci.
15:1393458. DOI: 10.3389/fpls.2024.139345.
Zhishen, J., Mengcheng, T., and Jianming, W. 1999. The determination of
avonoid contents in mulberry and their scavenging eects on superoxide
radicals. Food chemistry 64(4):555-559. https://doi.org/10.1016/S0308-
8146(98)00102-2