
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Reyes-Perez et al. Rev. Fac. Agron. (LUZ). 2025, 42(4): e254243
5-6 |
(2023), chitosan treatments act as an elicitor of secondary metabolism
in plants in general, while increases in phenol content are largely due
to the fact that the synthesis of this compound is increased by the
eect of chitosan application (Sanwam et al., 2023).
In general, it has been noted that the application of nanotechnology
in the agricultural sector (Tejeda-Villagómez, et al., 2023) is a
promising tool. This science is driving the development of a range of
innovative applications and products for the benet of agriculture, as
well as its use in the production of medicinal plants (Sun et al., 2023).
In the case of Si NPs, these appear to be an excellent alternative for
reducing the use of agrochemicals, as well as being eective systems
for administering nutrients and chemical compounds to plants and
crops of agricultural interest.
Furthermore, the integration of nanotechnology into agriculture
represents a signicant advance in improving the eciency and
sustainability of food production. This advance not only contributes
to global food security, but also promotes more sustainable and
environmentally friendly agricultural practices (Navarro-López et
al., 2025).
Conclusions
The foliar application of Si-NPs, enriched with dierent
microelements in a chitosan gel matrix, promoted greater plant growth at
the highest concentration (2,000 mg.L
-1
) and increased the nutraceutical
quality of cucumber fruits by increasing the phytochemical compounds
of antioxidants, avonoids, phenols and total soluble solids.
Literature cited
Allard, S.M., Ottesen, A.R., and Micallef, S.A. 2020. Rain induces temporary
shifts in epiphytic bacterial communities of cucumber and tomato fruit.
Scientic Reports, 10(1), 1765. DOI: https://doi.org/10.1038/s41598-020-
58671-7.
Canuto, L., Mendes, G.A., de Oliveiram, M., Araújo, J.L., Trotsk, S., Santos,
M.D., Ribeiro, V.G., da Silva, J., Lopes, C., y Queiroga, F. 2021. O
papel do silício nas plantas. Research, Society and Development, 10, 7:
e3810716247. DOI: https://dx.doi.org/10.33448/rsd-v10i7.16247.
Cázarez-Flores, L.L., Angulo-Castro, A. Vega-Gutiérrez, T.A., Ayala-Tafoya, F.,
and Aguilar-Quiñonez, J.A. 2023. Producción de tomate en respuesta a
dosis de silicio. Ecosistemas y Recursos Agropecuarios 10(3): e3851.
DOI: 10.19136/era.a10n3.3851.
Chagas, Y., Herrera, O., y Pereira, E. 2022. Uso da quitosana na agricultura: uma
revisão com ênfase na aplicação em sementes. Research, Society and
Development, 11(2), e39911225782. DOI: https://dx.doi.org/10.33448/
rsd-v11i2.25782.
Erreyes, B., Montoya, J., y Luna-Romero, E. (2023). Rendimiento del cultivo de
pepino (Cucumis sativus L.) bajo condiciones de mulch plástico, Ecuador.
Revista Cientíca Agroecosistemas, 11(1), 44-51. https://aes.ucf.edu.cu/
index.php/aes/index.
Farouk S (2023). Role of biostimulants in plant’s life cycle. In Biostimulants in
Alleviation of Metal Toxicity in Plants (pp. 75-106). Academic Press.
DOI: 10.1016/B978-0-323-99600-6.00010-4.
Galindo-Guzmán AP, Fortis-Hernández M, De La Rosa-Reta CV, Zermeño-
González H, Galindo-Guzmán L (2022). Síntesis química de
nanopartículas de óxido de zinc y su evaluación en plántulas de Lactuca
sativa. Revista Mexicana de Ciencias Agrícolas 13: 299-308. https://doi.
org/10.29312/remexca.v13i28.3284.
Guillén, R., Zuñiga, L., Ojeda, L., Rivas, T., Trejo, R., y Preciado, P. 2022. Efecto
de la nanobioforticación con hierro en el rendimiento y compuestos
bioactivos en pepino. Revista Mexicana de Ciencias Agrícolas, 13(28),
173-184. https://doi.org/10.29312/remexca.v13i28.3272.
Henriquez, C., Aliaga, C., and Lissi, E. 2002. Formation and decay of the ABTS
derived radical cation: A comparison of dierent preparation procedures.
International Journal of Chemical Kinetics 34(12):659-665. https://doi.
org/10.1002/kin.10094.
Insanu, M., Azkia-Zahra, A, Sabila, N., Silviani, V., Haniadli, Ariranur.,
Rizaldy, D., and Fidrianny, I. 2022. Phytochemical and Antioxidant
Prole: Cucumber Pulp and Leaves Extracts. Open Access Macedonian
Journal of Medical Sciences 10(A):616-622..https://doi.org/10.3889/
oamjms.2022.8337.
Jin, W., Li, L., He, W., and Wei, Z. 2024. Application of Silica Nanoparticles
Improved the Growth, Yield, and Grain Quality of Two Salt-Tolerant
Rice Varieties under Saline Irrigation. Plants, 13, 2452. https:// doi.
org/10.3390/plants13172452.
Karamchandani, B.M., S. Dalvi, M. Bagayatkar, I.M. Banat. and S.K.
Satpute. 2024. Prospective applications of chitosan and chitosan-
based nanoparticles formulations in sustainable agricultural practices.
Biocatalysis and Agricultural Biotechnology, 58:103210. https://doi.
org/10.1016/j.bcab.2024.103210
Kolbert, Z., Szollosi, R., Rónavári, A., and Molnár, Á. 2022. Nanoforms of essential
metals: from hormetic phytoeects to agricultural potential. Journal of
Experimental Botany, 73(6),1825-1840.
https://doi.org/10.1093/jxb/
erab547.
Kovács, S., Kutasy, E. and Csajbók, J. 2022. The multiple role of silicon nutrition
in alleviating environmental stresses in sustainable crop production.
Plants, 11(9), 12-23. https://doi.org/10.3390/plants11091223.
Laguna-Estrada, M., Ramírez-Pérez, N.V., Araujo-Rodríguez, J.A. y Rubín-
Ramírez, N.N. 2024. Un breve resumen sobre la implementación de los
sistemas expertos en problemas de agricultura. Research in Computing
Science, 153(9), 239-245. https://rcs.cic.ipn.mx.
Morteza, S., Moharrami, F., Sarikhani, S., and Padervand, M. 2020. Selenium
and silica nanostructurebased recovery of strawberry plants subjected
to drought stress. Scientifc Reports, 10:17672. https://doi.org/10.1038/
s41598-020-74273-9.
Navarro-López, N.E., González-Torres, A.M., Pérez-Pérez, A.E., Morales-
Mazariego, N., y González-Moscoso, M. 2024. Nanotecnología en la
agricultura: Innovación para la producción sostenible de alimentos.
Azcatl, 3, 23-27. doi: 10.24275/AZC2024B005
Paris, L., López, H., Medina, R., y Pérez, I. 2021. Efecto de bioestimulantes sobre el
crecimiento de la Vainilla Tahitensis en Daule, Ecuador. Revista Cientíca
Ecociencia, 8(6), 1-14. https://doi.org/10.21855/ecociencia.86.570.
Pérez-Velasco, E.A., Betancourt-Galindo, R., Valdez-Aguilar, L.A., González-
Fuentes, J.A., Puente-Urbina, B.A., Lozano-Morales, S.A., and Sánchez-
Valdés, S. 2020. Eects of the morphology, surface modication and
application methods of ZnO-NPs on the growth and biomass of tomato
plants. Molecules, 25(6), 1282.DOI:10.3390/ molecules25061282.
Picos-Corrales, L. A., Morales-Burgos, A.M., Ruelas-Leyva, J.P., Crini, G.,
García-Armenta, E., Jimenez-Lam, S.A., Ayón-Reyna, L.E., Rocha-
Alonzo, F., Calderón-Zamora, L., Osuna-Martínez, U., Calderón-Castro,
A., De-Paz-Arroyo, G., and Inzunza-Camacho, L.N. 2023. Chitosan as
an outstanding polysaccharide improving health-commodities of humans
and environmental protection. Polymers 15:526 https://doi.org/10.3390/
polym15030526.
Quirino-García, A., Martínez-Alonso, C., Sabino-López, J.E., Espinosa-
Rodríguez, M., Vázquez-Villamar, M., y Maldonado-Peralta, M.Á. 2024.
Aspersión foliar de nanoestructuras con zinc en plántulas de pepino
(Cucumis sativus L.). Ecosistemas y Recursos Agropecuarios IV: e4095.
DOI: 10.19136/era.a11nIV.4095.
Rastogi, A., Kumar-Tripathi, D., Yadav S., Kumar-Chauhan, D., and Živčák,
M., Ghorbanpour, M., El-Sheery, N.I., y Brestic, M. 2019. Application
of silicon nanoparticles in agriculture, Biotechnology, 3, 9-90. DOI:
10.1007/s13205-019-1626-7.
Figure 7. Nutraceutical quality of fruits, polyphenols (A),
avonoids (B), antioxidants (C) and total soluble solids
(D). Dierent letters above the bars indicate signicant
dierences between treatments at p≤0.05, according to
Tukey’s test.