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Abstract

We take a look at three instances where the subtleties of bivariate random variables arise:
a “different” proof of the fact that EXY= EXEY when X and Y are independent random variables;

an example where E
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
 ≠ and a slick proof of the fact that

( ) ( )P W k P Z k≥ ≤ ≥ when W and Z are either both binomial with parameters, respectively, (n,

x) and (n, y) with x ≤ y, or both hypergeometric with parameters, respectively, (N,n,m1) and
(N,n,m2) with m1 ≤ m2.
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Tres instantáneas sobre variables aleatorias bivariadas

Resumen

Damos una ojeada a tres situaciones que ilustran las sutilezas de las variables aleatorias
bivariadas; una prueba “diferente” del resultado EXY = EXEY cuando X y Y son independientes;

un ejemplo donde E
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
 ≠ y una prueba elegante de que

( ) ( )P W k P Z k≥ ≤ ≥ cuando W y Z son , o bien binomiales con parámetros, respectivamente,
(n, x) y (n, y) con x ≤ y, o ambas hipergeométricas con parámetros, respectivamente (N,n,m1) y
(N,n,m2) con m1 ≤ m2.

Palabras clave: Binomial; hipergeométrica; independencia.

1. Introduction

Anyone who has taught or has been
taught an introductory course in Probability
knows that there is a qualitative jump in
complexity when going from studying a sin-
gle random variable to studying a bivariate
pair of random variables. There is much
more to know about the joint pair than the
individual behavior of the two marginals.
The purpose of this note is to take a look at
three instances where the subtleties of biva-

riate random variables are manifest: a “diffe-
rent” proof of the fact that EXY =EXEY when
X and Y are independent (EZ denotes
throughout the expectation of the random

variable Z); an example where E
X
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but E
Y

X

EY

EX




 ≠ and an example where pro-

ving a result for univariate random variables
(monotonicity of the tail probabilities of bi-
nominal or hypergeometric random varia-
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bles with respect to their parameters) is ea-
sier when one considers an appropriate bi-
variate pair.

2. Another proof of EXY = EXEY
when X and Y are independent

Introductory courses in Measure-theo-
retical Probability usually give a proof of the
result

EXY EXEY= [1]

for X,Y independent random variables in ei-
ther of these two ways [1]:

(i) prove the result for simple random
variables, apply the monotone convergence
theorem to extend the result to non-negative
random variables and use linearity (plus an
easy argumente to justify that X, Y inde-
pendent implies X+, Y+, etc., are also inde-
pendent) to extend the result to arbitrary
random variables.

(ii) express the integral in the space Ω
as an integral in 2 with respect to the
measure µ2 (dx, dy) in the Borel sets of 2

generated by the pair (X, Y). Then independ-
ence of X, Y translates as µ2(dx, dy) being
equal to the product measure µ(dx) × µ(dy)
and Fubini’s theorem ends the job.

We present an alternative third proof
that is based on a generalization of another
well-known result that usually finds its
way into most textbooks, at least as an ex-
ercise:

EX P X t dt= >
∞

∫ ( )
0

[2]

for any non-negative random variableX. The
proof of (2) is based on either “first-simples-
then-monotone-convergence - then-
linearity” (2) or Fubini’s theorem, so in the
end our proof can be seen as a reshuffling of
the others, but we think it has some advan-
tages, discussed at the end of the section.
Here is the main “new” result:

Theorem 2.1

If X, Y are non-negative random
variables then

( )EXY P X x Y y dxdy= > >
∞∞

∫∫ ,
00

[3]

Proof. Write the right hand side as

1
00

( , ) ( , )( ( )), ( )) ( )x x y X Y dP dxdy∞ ∞ =∫∫∫
∞∞

ω ω ω
Ω

by Fubini’s theorem

1
00

( , ) ( , )( ( ), ( )) ( ).x x y X Y dxdydP∞ ∞
∞∞

∫∫∫ ω ω ω
Ω

The inner double integral is very easy to
evaluate: it is just the area of a rectangle
with sides of lengths X( )ω and Y( )ω . and so we
are left with

X Y dP( ) ( ) ( )ω ω ω
Ω∫ ,

which is the left hand side of [3].

Theorem 2.2

If X and Y are independent random vari-
ables then EXY = EXEY.

Proof. Assume first that X and Y are
non-negative. Then by [3] we can write

EXY P X x Y y dxdy= > >
∞∞

∫∫ ( , ) .
00

Since X and Y are independent, the in-
tegrand can be written as P X x P Y y( ) ( )> >
and thus the double (Riemann) integral is
just the product

P X x dx P Y y dy EXEY( ) ( ) .> > =
∞∞

∫∫ 00

Now we can finish the proof for arbi-
trary random variables just as in the version
(i) of the proof discussed above.

The advantage of this proof is that the
condition of independence that is used is the
most elementary one:
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P X A Y B P X A P Y B( , ) ( ) ( )∈ ∈ = ∈ ∈ , where A
and B are very simple Borel sets, namely in-
tervals. Also, the Riemann integral in [3]
looks less intimidating than the integral
with respect to µ2 (dx, dy):

P X A Y B P X A P Y B( , ) ( ) ( )∈ ∈ = ∈ ∈ , where A
and B are very simple Borel sets, namely in-
tervals. Also, the Riemann integral in [3]
looks less intimidating than the integral
with respect to µ2 (dx, dy):

3. An example where E
X
Y

EX
EY





 =

but E
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EY
EX





 ≠

The moment generating fuction (m.g.f.)
of a random variable X defined as
M t EetX( ) = is a basic tool in Probability the-
ory. Most introductory books (2), discuss at
varying lengths the salient feature of
m.f.g.’s, namely, the fact that the moments
of the variable X can be found by differentia-
tion of its m.g.f.:

EX Mk k= ( ) ( )0 [4]

It is not mentioned in the textbooks,
however, that it is also possible to compute
the inverse moments of a nonnegative ran-
dom variable by integrating its m.g.f. The
work of Cressie et al. (3) seems to be the first
reference mentioning this fact. The next two
theorems overlap with their results:

Theorem 3.1

If M (t) is the m.g.f. of the nonnegative
random variable X then

EX M t dt dt kk t

k

t

k

k−

−∞−∞ −∞
= ≥∫∫ ∫ −

... ( ) , .
1 10

1 1K [5]

Proof. Only for k = 1. The generaliza-
tions are straightforward.

M t Ee dF x dttXo
( ) ( ) ,

−∞ −∞−∞∫ ∫∫∫= =
0 0

e tx

R
+

where F is the distribution function of X. By
the non-negativity of the integrand, we can
apply Fubini’s theorem and interchange the
integrals to get:

e x dF x E
X

tx dt dF
x−∞∫∫ ∫





= = 





0 1
R
+

R
+

( ) ( ) .

1

(Note that the non-negativity of the x
variable is crucial in evaluating the inner in-
tegral).

If we combine differentiation and inte-
gration, we can prove results like the follow-
ing formula for the expectation of the quo-
tient of two random variables:

Theorem 3.2

Let M t t Eet X T Y( , )1 2
1 2= + be the joint m.g.f.

of the pair (X, Y), and let X and Y be nonnega-

tive with EX< ∞. Then

E
X

Y t
M t t dtt





 =









=

−∞∫
∂

∂ 1
1 2

0

21 0( , ) . [6]

Proof. All we have to do is check that in

the expression

∂
∂t

dF x y dtx t y
t

1

0

2
2

1 0et1 +

−∞
=∫∫









( , )

R R
+ +x

we are allowed to (i) take the partial derivati-
ve inside the innermost integral and (ii) ex-
change the order of integration. That we may
do (ii) follows as in the previous theorem; (i)
is granted by the dominated convergence
theorem and the fact that for
( , )t t1 2 ∈ � �x and (x,y) ∈ + +x we have

∂
∂t

e xt x t y

1

1 2+ ≤ ,

and the bound is a dF-integrable function.

Example. Let us consider the pair (X,Y)
with joint density function

f x y x y x e x y
y

( , ) ( – ) , .
–

= ≤ ≤1
0

4β
β

It is easy to see that X and Y are nonin-
dependent variables with distributions
Gamma ( )2,β and Gamma ( )4,β respec-
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tively. The joint m.g.f. is easily computed
yielding

M t t t t t( , ) [ – ( )] ( )1 2 1 2
2

2
21 1= + −− −β β

{ }for
1
β

≥ +max , .t t t2 1 2

Now [6] yields

E
X

Y t
t t t dtt





 = −

−∞

− −
=∫

∂
∂

β β
1

0

1 2
2

2
2

0 21 1
1

[ – ( , )] ( )

= − =−

∞∫2 1
1
22

5
2

0
β β

−
( ) ,t dt

and also

E
Y

X t
t t t dtt





 = − −

−∞

− −
=∫

∂
∂

β β
2

0

1 2
2

2
2

0 11 1
2

[ ( , )] ( )

[ ]= − + − =− −

∞∫2 1 1 31
3

1
20

1β β β
−

( ) ( ) .t t dt

Notice that since EX = 2β and EY = 4β,
we have provided an example where

E
X

Y

EX

EY




 = , but E

Y

X

EY

EX




 > .

When X and Y are independent, of

course E
X

Y
EXE

Y




 = 





1 , but even in this

case there is no guarantee that the expecta-
tion of the quotient is the quotient of the ex-
pectations, as is remarked in example 4.13
of reference (4).

4. Univariate results with
bivariate tricks

Perhaps the best known result of uni-
variate results with bivariate tricks is the
proof via couplings of the convergence of an
ergodic Markov chain to its stationary distri-
bution. We refer the reader to the monograph
(2), theorem 8.6, for details. Here we illustrate
the principle with a much more modest goal:
consider W and Z to be binominal random
variables with parameters, respectively (n, x)
and (n, y), and x y≤ . We want to prove that
P W k P Z k( ) ( )≥ ≤ ≥ for any k ≥ 0. One way to
proceed is to compute directly both probabili-

ties involved. Another more elegant way is to
consider n independent copies of the bivariate
0-1-valued variables ( , ), ,X Y i ni i 1 ≤ ≤ with
joint distributions dictated by the probabili-
ties P X Y x P X Yi i i i( ) , ( , )= = = = = =1 1 0 0
and P X Y yi i( )= = = −0 1 . If we define
W Xii

n=
=∑ 1

and Z Yii

n=
=∑ 1

, then the distri-

butions of W and Z are the binomials under
consideration, and by construction

{ } { }W k Z k≥ ⊂ ≥ , [7]

so that

P W k P Z k( ) ( ).≥ ≤ ≥ [8]

A similar idea can be applied in the case
of the hypergeometric distribution. Let N, m1,
m2 be integers with N m m≥ ≥2 1; we are go-
ing to define the joint distribution of a pair (W,
Z) of variables in a descriptive way: assume
that a box contains N tickets with two slots
numbered 1 and 2, such that there are m1
tickets with a white dot on both slots 1 and 2,
m2– m1 tickets with a black dot on slot 1 and a
white dot on slot 2, and N–m2 tickets with a
black dot on both slots. Now take a sample of
size n without replacement from the box and
let W andZ be the number of white dots of the
sampled tickets in, respectively, slots 1 and 2.
Clearly W and Z are hypergeometric random
variables with parameters, respectively (N, n,
m1) and (N, n, m2). Again, by constructions, [7]
holds and therefore the conclusion [8] also
holds.
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