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Abstract

Tumor image segmentation represents a crucial step not only in the diagnosis of the disea-
se but also in its evaluation and monitoring of treatment. In the present work, neural networks
are used to recognize the presence of tumoral tissue in central nervous system on magnetic re-
sonance images generated by in vivo spectroscopy and relaxometry. Relaxation data was valida-
ted and categorized by means of spectroscopic data, used as a sort of virtual biopsy. Neural net-
works were trained with the relaxation data in a supervised mode, assuming three categories for
the tissue: tumoral, normal or unaffected and liquid or necrosis. Segmentation performed in
this way correlates closely to other methodologies previously developed, shortening drastically
the processing time what makes it very useful in its clinical application.
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Segmentacion de imdgenes de tumores de sistema
nervioso central mediante técnicas de redes neuronales

Resumen

La segmentacion de imagenes de tumores representa un paso crucial no solamente en el
diagnéstico de la enfermedad en su evaluacion y monitoreo durante el tratamiento. En el pre-
sente trabajo, las redes neuronales son utilizadas para reconocer la presencia de tejido tumoral
sobre imagenes de resonancia magnética generadas por espectroscopia in vivo y relaxometria.
Los datos de relajacion fueron validados y categorizados mediante el uso de la informacion es-
pectroscopica. Las redes neuronales fueron entrenadas con los datos de relajacién en modo su-
pervisado, suponiendo tres categorias para el tejido: tumoral, normal o no afectado y liquido o
necrosis. La segmentacion realizada en esta forma correlaciona muy bien con la obtenida por
otras metodologias desarrolladas previamente, disminuyendo dramaticamente el tiempo de
procesamiento, lo que la hace una técnica muy util para su aplicacion clinica.
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Introduction

Magnetic Resonance Spectroscopy
(MRS) is a non-invasive tool that allows dis-
tinguishing brain malignant tumors from
non-anaplastic tumors (1). Metabolic maps
can be obtained by the Chemical Shift Imag-
ing (CSI) technique but they lack the spatial
resolution necessary for therapy considera-
tions (2, 3). Relaxation studies have been
used long ago for the assessment of tumors,
being the T,-map of a tissue often used as a
basis for interpreting clinical images (4). The
combination of both techniques allows for
the determination of nosologic maps with
appropriate spatial resolution to establish,
through segmentation, an accurate deter-
mination of Gross Target Volume or GTV
commonly used in radiotherapy treatment
planning. Neural networks have been exten-
sively used for pattern recognition and clas-
sification. In the present work, it is proposed
the use neural networks to obtain nosologic
maps using information coming from MRS
and Relaxometry.

Materials and Methods

CSI was performed axially to obtain
spatial distributions of metabolite concen-
tration across the lesion, TE= 30 ms and VOI

of 96 cm” (80 x 80 x 15 mm). Relaxometry
studies were performed using the standard
multiecho sequence (CPMG) with 16 echoes,
with a base echo time TE = 22 ms and 8 axial
slices 5 mm thick centered at the tumor. The
relaxation image parameters were set ac-
cording to CSI voxel matrix; two slices were
included within the CSI matrix. The spec-
troscopy data analysis was performed based
on relative values. The critical Cho/NAA ra-
tio value for which a tissue was considered
malignant was 1.3 or over. The spectra were
considered atypical if the Cho/NAA ratio had
a value between 0.9 and 1.29 and normal or
unaffected below 0.9. Necrosis was estab-
lished when all the metabolites intensities
were low. For the analysis of relaxation data,
a special image processing algorithm was
developed to extract the magnetization de-
cays for different regions of interest or ROI's
coming from within a CSIvoxel. All the decay
patterns coming from a particular CSI voxel
were classified according to the state of the
tissue (normal, pathologic, necrotic or
edema) determined by the CSI spectrum as
explained before. In this way CSI informa-
tion was used as a sort of virtual biopsy for
each voxel as shown in Figure 1. The struc-
ture of the neural network used in this work
was of the perceptron type (5). It included
two hidden layers consisting of three neu-

Figure 1. Left, T>-weighted multiecho image. Right, CSI grid used indicating voxels that correspond to
pathologic tissue (T) and normal or unaffected tissue (U).
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rons sisting of three neurons each one and
an output layer consisting of two neurons,
as shown in Figure 2. To provide an input
with enough time resolution to separate the
different decay patterns, at least twenty bits
were used. All exponential decay patterns
were normalized to intensity one for the first
echo time and in order to convert them to a
binary number, i.e., for the neural network
input, a threshold value previously deter-
mined was used in the following way: any
time the decay pattern was above the
threshold value a logic one was assumed,
otherwise a logic zero. Since the relaxation
decay data were only sampled for eight echo
times, interpolation was needed. The
threshold value was chosen to discriminate
between different decay patterns, i.e., the
value that imposes the highest differences
in the number of significant bits among the
decay patterns for the total number of input
bits selected. Training was performed using
the back-propagation algorithm in super-
vised mode only (6). To obtain the nosologic
map resulting from the neural network clas-
sification the following gray palette was
used: gray to indicate tumor tissue, white to
indicate normal or unaffected tissue and
black to indicate edema or necrotic tissue.

Results and Discussion

Analysis of the normalized decay pat-
terns suggested a threshold value of 0.3 to
obtain the binary input of the neural net-
work. Since the CSI voxel size included as
much as 500 relaxometry voxels, the
number of patterns that can be used to train
the neural network was about 3000, using
only those CSI voxels with a well defined di-
agnosis, i.e., Cho/NAA ratio above 1.3 to in-
dicate for tumoral tissue, less than 0.9 for
normal or unaffected tissue and low metabo-
lite concentrations for necrotic tissue. Some
considerations have to be done in the
number of iterations for the back propaga-
tion used to train the neural network in su-
pervised mode. In Figure 3, the error as a
function of the number of iterations during
the training of the neural network is repre-
sented. This learning plot indicates that
there is a global error rise for a certain
number of iterations, about 2000, and after
that point further training does not improve
any better the accuracy of the prognostic,
i.e., the global error remains around 50%,
the neural network have equal chances to
classify correctly. By contrast, for a single
pattern, the neural network can reduce the
error as low as possible with a number of it-
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Figure 2. Neural network structure used in this work. Two hidden layers with three neurons each and

an output layer with two neurons.
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Figure 3. Learning plot for the neural network. Black circles correspond to the global error obtained for
a training with many patters and white circles represent the error for a training made with a

single pattern.

erations sufficiently high. For all the cases
analyzed in this work 2000 iterations were
used, which guaranteed that the global er-
ror remained around 20%, with an average
processing time of approximately 5 minutes.
To validate the neural network classifica-
tion, nosologic maps so obtained were com-
pared with maps using the same type of in-
formation, i.e. relaxation data, obtained
with a methodology previously derived (7)
that uses an Inverse Laplace Transform al-
gorithm (ILT) to determine the transversal
relaxation rate spectra for each CSI voxel
and correlates it with the spectroscopic in-
formation coming from that CSI voxel. An
example of the comparison is shown in Fig-
ure 4. An analysis of the figure reveals a
great level of correspondence between both
maps, although the map obtained with neu-
ral network exhibits less detail and is limited
to only three gray levels. In all the cases ana-
lyzed in this work by both methods the cor-
respondence was always above 80 %. There
is an intrinsic problem in both methods that
comes from the partial volume problem (8,
9), i.e., the CSI voxel is too big that it always
contains more than a tissue type, and both
methods handle this problem in a different
way. The neural network method estimates

a sort of “decay time” to convert the decay
pattern to a binary number. It is easy to see
that different combinations of exponential
functions could give almost the same binary
number mixing tissue information. This
suggests introducing different ways to codify
the decay pattern. Another difference exist
in the processing time, the neural network
method takes about 5 minutes for the train-
ing while the ILT method takes about the
same time for a single relaxation rate spec-
trum to be obtained and many relaxation
rate spectra are needed to establish the cor-
relation of relaxation rates with spectro-
scopic data. This result points in favor of us-
ing the neural network method to obtain no-
sologic maps in a reasonable time, particu-
larly when a high number of images have to
be analyzed as happens in 3D treatment
planning for radiotherapy or radiosurgery.

Conclusions

The methodology presented in this
work clearly yields nosologic maps that al-
low for the segmentation of brain tumor im-
ages with appropriate spatial resolution for
therapeutical needs. Its use can be extended
to combine images obtained from other mo-
dalities, such as diffusion weighted images.
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Figure 4. Comparison of (a) nosologic map obtained with neural network trained in supervised mode
and (b) nosologic map obtained by inverse Laplace transform method [7]. Correspondence is

of 86.1 % for this example.

Finally, fusion of spectroscopic information
with images coming from other MR modali-
ties such as relaxometry or diffusometry
seems to be the best way to assess a confi-
dent segmentation of the tumor image.
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