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Abstract

We present a trophic chain model that describes the invasion of Lemna obscura (a duckwe-
ed) in Lake Maracaibo. We consider a prey (the Lemna), with a predator (a herbivore), and we in-
clude an explicit equation for a nutrient. It is noteworthy that our model does not present some
well-known paradoxes such as Rosenzweig’'s enrichment paradox, and Luck’s unstable low
prey paradox. We find that both stable nutrient and Lemna equilibrium populations are propor-
tional for small nutrient influx. For higher flux input, the Lemna population grows linearly with
nutrients, but a stable predator population requires a threshold nutrient density. We suggest
that the huge amounts of Lemna in Lake Maracaibo could be profitable as an important protein
source for manufacture of manure, and also for animal and/or human nutrition.
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Un modelo de cadena tréfica, con la inclusion
de un nutriente, una presa y un depredador aplicado
al ecosistema del lago de Maracaibo

Resumen

Se presenta un modelo de cadena trofica que describe la invasion de Lemna obscura (una
lenteja de agua) en el lago de Maracaibo. Se considera una presa (la Lemna) y un depredador (un
herbivoro), y se incluye una ecuacion explicita para el nutriente. Una caracteristica importante de
nuestro modelo es que este no presenta la paradoja de enriquecimiento de Rosenzweig, nila para-
doja de ausencia de poblacion pequena estable de presa de Luck. Se encuentra que las poblacio-
nes estables de presa y nutriente son proporcionales para concentraciones pequenas de este.
Para concentraciones mayores del nutriente, la poblaciéon de Lemna crece linealmente con el flujo
de ingreso de nutrientes; sin embargo, la existencia de una poblacion estable del depredador re-
quiere una densidad umbral del nutriente y, por lo tanto, de presa. Se sugiere que las ingentes
cantidades de Lemna que existen en el lago de Maracaibo podrian ser aprovechadas como fuente
importante de proteinas en la fabricacion de abonos y también en nutricién animal y humana.

Palabras clave: Aprovechamiento humano; cadena trofica; depredador; fuente de

proteinas; paradoja; presa.
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Introduction

Lemna or duckweed is a plant of the
araceaus order, family lemnaceae, with 6
genres and 38 species. This order includes
the tiniest existing flowering plants. They
can reproduce themselves sexually by
polinization, or asexually, by gemation.
Many species resemble little green shavings.
They live in tropical or subtropical environ-
ments and a great number of varieties exist
in Venezuela (1). They feed on nitrogen and
phosphate wastes taken up from polluted
water (2, 3, 4, 5) and they produce big
amount of biomass (6, 7, 8). Duckweed is an
important source of essential amino acids,
and there are detailed studies on its utiliza-
tion as animal foodstuff (9, 10, and the refer-
ences therein). Duckweeds are very sensi-
tive to some toxics (11, 12), and they are cur-
rently used in bioassays for measuring the
pollution level of freshwater reservoirs and
the existence in a region of dangerous
chemical compounds (13, 14, 15). Lemna
growth depends also on seasonal daily ra-
diation, and their appearance usually coin-
cides with the sunniest months each year.
Uncontrolled duckweed growth may lead to
freshwater eutrophization. During the first
half of 2004, a Lemna patch covered an im-
portant portion of the surface of Lake Mara-
caibo. Duckweed episodes have been re-
peated in 2005 y 2006. Lake Maracaibo has
an approximate area of 13.300 Km’, and a
volume of 280 million cubic meters, a large
part of which is heavily degraded. The mag-
nitude of the duckweed invasion suffered by
the largest freshwater volume in South
America caught our interest, and we devel-
oped a model describing duckweed behav-
ior, with the inclusion on nutrients, and a
predator feeding from it. We propose a very
simple, three level trophic chain, each one
described by a coupled differential equation.

There is a good deal of literature on tro-
phic chains, and we limit ourselves to men-
tion only some of them, dealing with stability
and bifurcation analysis (16, 17), and with
chaotic behavior (18). Stability, asymptotical

behavior and extinction scenarios, in particu-
lar mutual extinction and a disagreement with
the Luck low density paradox, are discussed
in (19), (the existence of a well behaved equi-
librium point is also proved in that work). Ex-
istence of equilibrium points, stability and de-
termination of phase pictures are dealt with in
(20), but in that work numerical restrictions
are imposed on the parameters ruling the sys-
tem. A question remains as to the phenome-
nological justification for the inclusion in
those articles of a Michaelis-Menten type re-
sponse. For a study of exploitation ecosystems
based on predator and prey isoclines, see (21)
and the references therein. A study of a tro-
phic chain of n sequentially interactive ele-
ments, each one described by an ordinary dif-
ferential equation, is performed in (22). In that
article, the authors specify some limiting con-
ditions on each equation determining an in-
teraction between each pair of consecutive
terms, after that, they can make predictions
for their system global stability. An arbitrarily
long food chain is described in (23). The
authors now impose uniformity hypothesis for
the interaction functions that they use. That
approach allows them to study their system
stability without restricting the predator-prey
interaction to any specific functional form.
Validation of models using real data associ-
ated with them is a less studied subject, refer-
ence (19) being an exception to this. A very
complex model for Lake Zapotlan (Mexico) was
recently presented (24). That paper includes a
careful parameter evaluation, but the very
complicated system of differential equations
prevents the authors from any qualitative (in
the mathematical sense) and/or linear analy-
sis of their system. Other researchers (25) as-
sume the existence and stability of a positive
equilibrium point (a equilibrium point is
termed positive if all its components are posi-
tive), after that the desired study is carried out
(sensibility to mortality of their hypothetical
equilibrium point and adaptative changes of
the model trophic levels).

Given a trophic chain model, it is a
lengthy and cumbersome process to find its
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equilibrium points and to discuss the stabil-
ity of each one. The difficulty is linked to
solve one at least grade-three algebraic
equation. Many researchers avoid dealing
with such a subject, but instead impose
well-known restrictions to the parametric
functions describing the interaction among
their systems diverse components, these
conditions assuring the stability of the as-
sumed positive equilibrium point, if it exists.
Aword is necessary on the intrinsic stiffness
of such well-behaved systems.

In this paper, we describe the temporal
evolution of a trophic chain under condi-
tions associated with various levels of nutri-
ent, commensal, and predator, and their
growth and decay rates. We find the depend-
ence of the equilibrium and stability concen-
trations, on the parameters ruling the men-
tioned interactions, we summarize our find-
ings in three theorems, and then we suggest
some applications for our model. The re-
mainder of the paper is as follows: we define
in part 2 the variables and parameters de-
scribing our system, in part 3, we study the
equilibrium and stability of the system, and
we present our theorems, in part 4, we dis-
play some graphics illustrating the results of
the precedent chapter. In part 5, we discuss
our results, and finally, in part 6 we present
our conclusions. Additionally, some mathe-
matical details are outlined in the Appendix.

System

We introduce here the differential
equations ruling our system. Variable X rep-
resents the duckweed; variable stands for
the nutrient; and variable Z represents a
herbivore as predator (tilapia, a fish, for in-
stance) capable of controlling Lemna
growth; finally, time is represented by 7. All
variables and parameters in this system al-
ways have non-negative values. We sepa-
rately discuss in the following the differen-
tial equation for each variable. Lemna, X,
grows feeding on the nutrient, Y, at a rate
a, XY, duckweed growth is limited in a logis-
tic way (Pearl-Verhulst) —a,X?, and herbi-

vore (top predator), Z, feeds on the Lemna
and this interaction produces an additional
decay —a,XZ, where, a,, a,, and a, are the
respective ruling dynamical coefficients.
Therefore, the temporal evolution for duck-
weed is given by:
d‘)( 2
@ =a, XY —a,X” —a,XZ [1]
Nutrient, Y, is poured into the water at a
rate b,; it degrades down after a time b;',
and duckweed takes it at a rate b, XY, with
b, as the dynamical interaction coefficient.
The equation for the nutrient is then:

dy
o =b =Db,Y ~bXY 2]

Herbivore growth rate is proportional to
the duckweed uptake e XZ, with e, as the
dynamical associated coefficient. Herbivores
die after a time e;'. Then Z behaves as:

dz
G SaX-ez [3]

Note that in a real interaction, all the
coefficients in our equations are not con-
stant but variables that depend in a complex
way on factors such as nutrient concentra-
tion, water temperature and salinity, daily
solar radiation, presence of oligosinergic fac-
tors, etc.

We now introduce the changes:

b a
t=b,1;, x=-X: z=-"22Z
2 b, b,
_a, by _b e ey
My, Tt PER VTR 0T,

And our system reduces to:

dx
E=alxy—a2x2 -xz; x=0, [4]
dy
E=ﬁ—y—xyi yz=o0 [5]
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dz - L ay
o S e ez z=0, [6] Pl(xf,yl,zl)=(x1,(72x1,0) (8]

Where a, 20, a, >0, §>0,y>0, >0
are the parameters ruling the interactions
among the diverse elements of the system.

We observe that z=0- % = 0; this fact

means that when z(t) takes this value, it re-
mains unchanged unless additionally per-
turbed, and similar statements can be made
dx . dy
for x(t)(x=0-> ar 0), whiley=0 - a >0,
then it is immediate that system [4] to [6]
stays in the first octant of the space if it is
initially there. Therefore our study is limited
to points in this space (points with biological
meaning).

Equilibrium points and their
stability

1. General. Equilibrium points for our
system are found by equating to zero the
right hand side of equations [4] to [6]. As-
ymptotic stability is discussed by lineariza-
tion and evaluation of the eigenvalues of the
associated Jacobi matrix. We use the
Routh-Hurwitz criterion for evaluation of
the eigenvalues signs, (26) and Central
Manifold Theory, (27) when necessary (null
eigenvalues). For mathematical details, see
the Appendix.

2. Equilibrium points. In the follow-
ing, we use a super index asterisk for denot-
ing the respective variable equilibrium val-
ues. Our system has three equilibrium
points, and we call the null equilibrium
point P, that one having no Lemna popula-
tion. Then,

Py(xy. Yo»24) = (0, 8,0) (71

This pointis unstableifa, >0.Ifa, =0,
or =0, there are no more equilibrium
points, but then P, is stable (this is shown by
similar methods to that used in the Appen-
dix). The following equilibrium point, P, is
given by:

1
. 1 1 .o
X, = _5+§ 1+ 4a,8 / a, and x, ¢; [9]

a
(observe that P, reduces to — B, 5.0 for
a

2

a .
— B <<1).P, is stable if x, < ? and unsta-
a, 14

ble if x; > e
Y

If x; > 9, the system has a last equilib-
Y

rium point, P,, which we call the general
point because it holds the three non-null
variables x, y, z, Lemna, nutrient, and preda-
tor. This point is given by:

@ __# a,p )

-a,9 [10]

P.(x .y .,z.)=(=, ,
o %a Yo %o y 1+o/y 1+o/y y

P, is always stable. Now we define:

B =220+ 9 [11]
ayy Y

When < g,z (and therefore P,) does
not exist. Then = (5, is the condition of ap-
pearance for the predator (threshold condi-
tion). An equivalent statement of this fact is:

a2

1
1+ /1+alﬁ].
2a,p @y

Asy is density predator growth rate for unity
of prey attacked, and w™' is predator mean

B <p, implies 0< Y <
(0]

lifetime, then Y s proportional to the preda-
o

tor’s density lifetime increase. Therefore, we
conclude that if a predator has a reproduc-
tion rate too low, it faces extinction.

Note that: I) the equilibrium concentra-
tion z, grows linearly with g. I) z; can be
null irrespective of large values of nutrient
and duckweed. III) a bifurcation occurs at

x; = 9, because at that value of xthe system
Y

evolves from two distinct equilibrium points,
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P,, unstable, and P, stable, to three equilib-
rium points, P,, and P,, both unstable, and
P, stable.

3. Particular cases. The following
statements can be easily verified by lineari-
zation and evaluation of the resulting eigen-
values. If ¢, <<, there is only P,, stable (
this condition can be interpreted as a high
aggressive predator, as our variable nor-
malization settled the coefficient of the inter-
action predator-prey fixed as 1). If a, <<1,
there are P,, unstable, and P, ,stable. If
a, >>1 (very large), equation [4] becomes
% ~ —a,x”, uncoupled. Then simple inte-
gration shows that x(t) = 0 whent - o, and
likewise occurs for y(t), and z(t), therefore we
have now justP,, stable. If 8 = O, there exists
just (0,0,0), stable, as equilibrium point. If
y <<1(or if - =), the system has two equi-
librium points, P,, unstable, and P,, stable.

w .
When O0< — <<1, numerical work reveals
Y

transient oscillations in x before the system
evolves toward its respective equilibrium
point.

4. Summary of equilibrium and sta-
bility. The results above are summarized in
the following three theorems:

Theorem 1. The system [4] to [6]: ]) has
an unstable null equilibrium point (absence
of duckweed, x, and herbivore, z unless
a, =0, II) has a stable, equilibrium point,

with no herbivore, if x; < 8, this point being
14

unstable in any other situation, III) has a
general, non null, stable equilibrium point
P,, stable. If < 8., P, does not exist.

Theorem 2. The system [4] to [6]: )
has only one stable equilibrium point given
by P, = (0, 8,0)in the following cases: «, = 0,
or a, = », or $=0. (In the first two situa-
tions we speak of predator (herbivore) ex-
tinction for prey (Lemna) exhaustion, but if
B =0, we call the system “unviable”). II) If
y =0, or if = o, the system has two equi-

librium points, P,, unstable, and P,, stable.
III) For the remaining cases there exist the
points P, unstable, and P,, stableif f < 3, .
If > B.., P, and P,, are both unstable, but
now appears P, stable.

Theorem 3. The system [4] to [6] has a

bifurcation at x, = @ (change in the P, equi-
14

librium point stability, from stable to unsta-
ble, and appearance of P,, stable, as xf

grows up to %).

The plots of equilibrium variables as a
function of the nutrient influx § are shown
in Figure 1. Figure 1-a shows that there is
always a stable, and non null equilibrium
value for the Lemna, x", irrespective of the
value, x;, forO< <, ,and x_, for > §,..
Then at g = f,,, the bifurcation value for nu-
trient influx, the complexity of the system
grows (a new equilibrium value appears,
and the stability of one of the former
changes). This fact represents a departure
from results reported by Gragnani et al (28),
who found that complexity first grows, and
then decreases. From Figure 1-b, it is clear
that a minimal concentration 3, , of the nu-
trient is required for the existence of a non-
null stable herbivore concentration. Note
that this concentration grows linearly with
nutrient flow. Then Figure 1 stresses that
x; and z, grows with 8, the nutrient input.
Our system does not present the so-called
enrichment paradox described by Rosenz-
weig (29). However, it is necessary to point
out that such a paradox perhaps stems
from a misinterpretation.

Numerical integrations

We show now some simulations made
with MAPLE (Waterloo University, Canada).
Figure 2 shows a stable situation with nutri-
ent and lemma present, but with no herbi-
vore (B<p,). Figure 2-a shows nutrient
growth, Figure 2-b, duckweed, and Figure
2-c, the herbivore which evolves toward its
null equilibrium point. A phase diagram is
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Figure 1.

Figura 2.
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Plots of Lemna and herbivore equilibrium concentrations as function of 8, the nutrients input
into the system. a) There is always a non null, stable equilibrium value x, or x_, for the Lemna.
The null point x 0 is unstable everywhere. b) A bifurcation occurs at = §,,, then the comple-
xity of the system grows a step at this point. c) The equilibrium value z for the herbivore is
always stable, and grows linearly with 8. Thus, the paradox of enrichment is not present in our
system. Numerical values used in this figure:a;, =1L, a, =w=y=2,and0< f<7.

a) b)

o

Nulrient, y

Lemna, x
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[t]

L] E] = E] E]
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c) d)
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Lemna -
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Numerical integrations for P, unstable, I, stable, and P, nonexistent (8<f,,). In (2-a) Lemna
evolves toward its equilibrium stable point; x, ; in (2-b) nutrients evolve toward y, . Predator
behaves likewise (2-c). Note that x, and y, are both not null, but z, =0, in agreement with
equations [8] and [9]. (2-d) shows the system phase picture. This figure exemplifies a situation
in which nutrient flux is insufficient to support a predator. Parameter values used:
a, =w=f=05a, =1y=2, and a randomly chosen set of diverse initial conditions.
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Figura 3. Numerical integrations for P, and B, both unstable, and P, stable. Figure (3-a) shows nutrient
vs time, Figure (3-b), Lemna vs time, Figure (3-c), herbivore vs time, and Figure (3-d) is a phase
picture of the system. Irrespective of the initial values, the system evolves toward its
equilibrium stable point. Note that (3-a), (3-b), and (3-c) are actually projections of a
three-dimensional system on the chosen axis, therefore these curves do not intersect each
other when displayed in space. This is easily seen in the three-dimentional phase picture of the
system, Figure (3-d). Parameter values for this integration:a, = =05, = =1y =2,anda
randomly chosen set of diverse initial conditions.

shown in Figure 2-d. In Figure 3 we display a
situation with P, and P, both unstable but
P, stable. Figure 3-a shows the nutrients
temporal behavior, Figure 3-b shows the
duckweed vs. time, Figure 3-c the herbivore
vs. time, and Figure 3-d, the corresponding
phase picture. We observe that the system
evolves from its initial values towards the
only stable equilibrium point. These graphs
illustrate the total agreement between
mathematical predictions and numerical
facts in our model.

Discussion

As the validity of a model depends
(among others factors) on its agreement with
well-known results and with not presenting

unsupported paradoxes, we now check our
model with those important facts. We begin
discussing mutual extinction, a subject else-
where treated with a very different model
(19). We find mutual extinction when
a, <<1, prey (Lemna) rate of reproduction
too low (see our equation [9]). Note that our
variable normalization settled the coefficient
of the interaction predator-prey fixed as 1,
then the condition a, << 1, can also be inter-
preted as a high aggressive predator, a con-
dition that leads to mutual extinction. There
is also extinction when a, - o« (prey self- in-
ertia too high).There is also extinction when
a, = « (prey self- inertia too high). We now
observe equation [8]. If  is enough small so
that a first order series expansion is valid for
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the square root, then y; = 8, and x; = Z—lﬂ,
2
that is, nutrient stable equilibrium concen-
tration is determined by its flux input, and
Lemna stable equilibrium concentration de-
pends on its growth/self-inertia ratio times
nutrient flux input (see also Figure 1), but
then there is no predator, see Figure (2-c).
For higher flux input, however, the situation
is more complex (see the equation [9]).
Lemna equilibrium population, x_, , depends
only on top predator parameters. Nutrients,
s » grow linearly with By, <y, ), but a sta-

ble predator population requires that
B> B, this means that our system presents
a nutrient threshold density for total viabil-
ity. If our goal was full Lemna eradication,
this could be achieved by trying «, >>1, or

@< 1 (Theorem 2), but these possibilities
4

are just mathematical, not biological facts
(self-inertia, growth rates, and lifetimes are
all non-null and finite). Another possibility
is making a, = O (see also Theorem 2). This
implies stopping the Lemna-environment
interaction, or high predation rate. It looks
as this possibility has been already repeat-
edly made (paroxysmal mechanical Lemna
extraction from the lake), but after each ex-
traction episode Lemna returns. Now just
the § = Oapproach remains. Lemnacould be
eradicated stopping the nutrient influx into
the lake, and reverting its pollution status,
an apparently simple policy. But as simple
as this approach seems, we think it is una-
chievable due to the huge and diverse
sources of contamination pouring into the
lake (see 18), and also for the implicit task of
changing the behavior of communities lack-
ing a conservationalist culture. We see from
equation [10] and also from Figure 3, that a
system as described in equations [4] to [6]
can support a stable, non null equilibrium
predator. Such a predator could be a fish (ti-
lapia, for instance) or man, taking the duck-
weed (regularly) from the lake for later use
and profit. Now we deal with paradoxes:
Luck biological control paradox states that a

system cannot have both a stable and low
equilibrium density, but inspection of our
equation [10] shows that if both f << 1, and

% <<, a value of the ratio % can be found
1

so that P, does exist, and it is stable, there-
fore our system does not present such para-
dox. Note also from our equation [10] that
predator abundance is proportional to nutri-
ents input, in contradiction with the Rosenz-
weig paradox (29). This author makes a geo-
metrical analysis of a system predator
(P)-prey (V), without an explicit differential
equation for the predator, and lacking of a
null equilibrium point (no prey, no predator).
He then uses a nullcline based approach for
discussing six models, all but one, Pearl-
Verhulst (logistic) or Gompertzian, and he
proves that the unique equilibrium point in
his systems becomes unstable when the nu-
trients flux grows. Such geometrical ap-
proach could be right, but we add a different
interpretation. Bidimensional models usu-
ally have two equilibrium points, the null
point, unstable for logistic and Gompertzian
models, and a general, not null equilibrium
point, which stability depends on the rela-
tions among the parameters ruling the sys-
tem. As the null equilibrium points of the
previous cited models remains unstable, the
expected conclusion is “if nutrients influx in
logistic or Gompertzian models grows, all
grows”. For an additional discussion, rooted
in Rosenzweig’'s method and useful refer-
ences, see (22). An illustrative discussion on
Gompertzian growth can be found in (30).

Conclusions

1) Lemnawill spread to the whole region
where nutrients exist, then it is necessary to
avoid nutrient accumulation. The equilib-
rium point becomes arbitrarily small by
making § = O, see equation [5]. Alternatively
could be made small by finding a way of
blockading the Lemna-nutrient interaction,
see equation [4].

Scientific Journal of the Experimental Faculty of Sciences,
at the Universidad del Zulia Volume 16 N° 1, January-March 2008



H. Ortega and A. Acosta/ Ciencia Vol. 16, N2 1 (2008) 59 - 70

67

2) It is well known that Lemna is very
susceptible to certain toxics. Notwithstand-
ing, it does not seem a wise policy to make the
pollution in the lake worse by adding an addi-
tional harmful substance, which can stay in
solution for a unknown period of time.

3) An alternative could be the use of
predators (fish, water birds) to control Lemna
growth. Predators should be chosen accord-
ing to their human profit. As foreign species
have a long and unfortunate record in places
where they were introduced as control, a
careful study of risks should be performed
before using this method. Moreover, a preda-
tor must meet both two simultaneous re-
quirements: reproduction rates enough high
and limited efficiency of predating.

4) It is well known that: a) duckweeds
reduce the environmental pollution if the
plants are taken from the water before their
decay returns the not desirable substances
they have gathered, and b) duckweeds pro-
duce a large amount of high quality bio-
mass. Therefore, Lemna cropping could be a
mean of keeping the water quality high. Any
direct human consumption should be pre-
ceded by the adequate elimination of salmo-
nella and similar harmful bacteria from
Lemna fronds. Moreover, a study of heavy
metals concentration in water of the lake
and on duckweed is also mandatory before
human dietary use. Alternatively duck-
weeds could be used as raw material in pis-
ciculture, avian or animal nutrition, or in
fertilizers manufacturing.

There are many studies dealing with
the use of Lemna. The step to be done now is
to provide the current Lake Maracaibo re-
gion inhabitants with the appropriate
knowledge and education to take advantage
of having around them a huge source of raw
material, which demands for its use just
bending a little bit the waist.
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Appendix

The linearization process is based on
the calculation of the Jacobian matrix in
each one of the equilibrium points. For sys-
tem [4] to [6] this matrix is given by:

ay-2a,x—z ax —X
J =86(X’Y’Z] = —y “1-x 0 | (a1
oy, 2) vz 0 yX — o

We limit ourselves to consider the gene-
ral point P, . The eigenvalues determinant is
given by:

_&%® a2 _@
Y Y Y
J, =det| - _1_7_; o |=0
y+tw w
vz’ 0 -2

with 4 as the eigenvalue, and z', the equili-
brium concentration of z. The characteristic
polynomial is:

a, fo

2+ /12|:9(1+a2)+1}+/{—azw(g+l)+7+wz* +
Y y oy y+o

w(ﬂ + 1)z* =0 [A-2]
y

This is, a A*> +a,A*> +a,A+a, =0 type
polynomial. The Routh-Hurwitz criterion
states that polynomial roots have real nega-
tive partifa, >0;a, >0; a,a, —a, >0 (Sta-
ble system). The fulfillment of the first two
conditions is verified by simple inspection, if
z >0. Moreover

a,a,—a; = a—2(9+1)+ﬂ
v yto
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w A, .|, cps . *
—(Q+a,)+1+——2z s positive if z >0.
Y Y

L afaye
Under the condition —— = and by
14
. — o _ a,w
using the changes x=x——, y=y-— )
Y ay

z = z, system [.4] to [6] can be written in com-
pact form as X = BX + C, where

a0 a0 »
x v 14 14
X=|g| B=|-22 _ by 0 |and
ayy o
z 0 0
—a, Xy —a,X> — Xz
C = -Xy [A-3].

Notice that each component of vector C
is a second degree polynomial in three varia-
bles and the same will happen with any vec-
tor that is obtained by means of P~'C, where
Pis a non singular constant matrix. We will
use this fact later on. On the other hand, the
eigenvalues of B are:

A A
A, =0and 1, = _Ei Py [A-4]
where A =M+M,
Y ay,w
2 2
K =(azw_a1ﬂy) _4a2(w) '
Y ay,w Y

We observe that 1, <0 if A> >0 and
Re(1,) <0 if A*> <0. However, due to 4, =0,
we cannot reach a conclusion on stability
immediately. We will pay attention to the
case A’ >0 and, in order to obtain informa-
tion concerning stability, a center manifold
approach is followed. Our starting point
consists in considering a change of variables
based on a decomposition of matrix B, and
this discussion is subdivided in two cases:

I) A% > 0. In this case there exists a non
singular matrix P, such that B can be decom-
posed as B= PDP™', where D is a diagonal
matrix that contains in its diagonal the ei-
genvalues of B. In order to obtain P, we use
the eigenvectors of B. The eigenvectors co-
rresponding to the eigenvalue 1, = O are:

|: a,pB Ay

_a2(a2 +a,p) " ala, +a,p) t’ti| teER,  [A-5]

and, the eigenvectors corresponding to 4,
are:

T
[t, (“2 + L2, )t, 0] teR [A-6]

a, oo

Now, taking t = a, + «, in [A-5], and
t = a, in [A-6], the matrix P is obtained as:

a
“, o, _ap
Ay
7 A a
p=|"y a, oy a, -2
w 1
0] 0 a, +a,f

and its inverse is immediate.

1, 00
Now, B=PDP' being D=0 i_ O|
O 0O

x
Next, we introduce a new variable X = |y
z
3

through the change X = P~'X and then (A-3)
is written as:

x| [4, 0 ofx

gl=l0 4 o|gl+P'C [A-7]
z 0O 0 0|z

where Cis the matrix C given in terms of X,

and z. Also, (A-7) can be decoupled as fo-
llows:
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x| [+ OX] [a(X0.2) N 210

gl Lo Ay * g,(%.7.%) [A-8] J=|0 A 0| Let us consider the vector
000

303+ 0!17/()7"' v —ﬂE)Z, [A-9] which is obtained by taking t = 2 in [A-10]

a, and call it Vi, we have

where g,(x,y,z) and g,(X,y,2z) are the two
first components in the vector P'C. Let us
now introduce the notation g'(-) to denote the
Jacobians of the functions g, and g,. We
have, given that g, and g, are second degree
polynomials in X, y, z with zero independent
term, that:

g,(0,0,0) = g,(0,0,0) = 0 and g/ (0,0,0) = g,,(0,0,0) = 0.

Therefore, the system [A-8]-[A-9] has a
local center manifold at (0,0,0). Thus, there
exist differentiable functions h, ,h, such that:
h,(0)=h,(0)=0,h;(0)=h,(0)=0and X,y are
represented as X = h,(z),y = h,(z). Since the
system [A-8] is stable at the origin, the stabi-
lity of the complete system [A-8]-[A-9] de-
pends of the scalar equation [A-9]. A Taylor
expansion, around z = 0, for the functions h,
and h,, allows us to write this equation as:

Z=ay| oz*)+o(z*) -

Then (0,0,0) is a stable equilibrium
point of the system [A-8]-[A-9].

1) A*> = 0 Here the eigenvectors corres-
ponding to 4, = 0 do not change and, as be-
fore, are giving by [A-5]. The eigenvectors co-
rresponding to the eigenvalue with multipli-

1
citytwo,1, =1_=41= —(%w +alﬁy)are:
2\ vy a,w

2
[t,l(%— ﬁ”z)t, O],tei)‘t [A-10]

2\a, a,w

In this case the space of vectors asso-
ciated A to have dimension one, and it is not
possible to decompose B by using a diagonal
matrix. Instead, we obtain a non singular
matrix Q such that B=QJQ ', with

2

a 2 8
v, = [2,2— Py ,O} . After some compu-
a, a,w

tations, we obtain the set of vectors v such

that (AI — B)>v = Oand (AI - B)v = v,, where I
is the identity matrix, and this leads to:

V{t?(l(w_w)t_z] 0] A1)
a,w{2\ vy a,

Let us consider the vector which is ob-
tained by takingt = Oin [A-11] and call itv,,

T
2
we have v, = {0 = } . Now, the matrix

can be chosen as:

5 o % ]
22
Q| [we_abr) o
ao\ y a,w a,0 a, |
0 0] a, +a,p

Hence, through the change X = Q7'X
the system [A-3] becomes in

A00
=0 10
00O

+Q7'C [A-12]

N (@2 K-
N @ X2

where now Cis the matrix C given in terms of
X, yand z. Also, [A-12] can be decoupled as:

%] _[» o%], [£(%5.2)
M _[0 A]{Q}Jr[fz(i, g,z)] [A-13]
F e alﬂ)z(z)? - O;Iﬁ 2) (A-14]

where f,(X,y,2z) and f,(X,y,z) are the two
first equations components in the vector
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Q'C. Like case I) here S, and f, satisfy the
conditions:

£,(0,0,0) = f,(0,0,0) = 0 and f] (0,0,0) = f; (0,0,0) = 0.

Therefore the system [A-13]-[A-14] has
a local center manifold at (0,0,0), and now it
is easy to observe that

Z =yla, + alﬂ)§(2o(zz) _ap 2)
ay
- _ alﬁy(aZ + alﬂ) 32 1 o(3°).

Ay

Hence, (0,0,0) is a stable equilibrium
point of the system [A-13]-[A-14].
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