'%3E%0A%3Cpath d='M0 98.6H935v-26H0v26Z' class='g0'/%3E%0A%3C/g%3E%0A%3Cpath d='M0 1169.7H935v-26H0v26Z' class='g0'/%3E%0A%3Cpath clip-path='url(%23c0)' d='M935 1169.7h935v-26H935v26Z' class='g0'/%3E%0A%3Cpath d='M292.6 166.3H434.2M305.9 257.5H445.8M108.7 348.6H246.3m-164 91.2H207.1m55.8 74.6H394.6M108.7 589.1H248.1m-74.9 58.2H309m-50.7 74.6h122m-104 58.2H405.1M183.8 871.2H318.5m-8.7 74.7h136M236 1020.6H368.6M82.3 1111.7H213.5M680.4 199.3H809.1M751.9 274H883M747.2 315.6H883M614.4 390.3H752.5M545.8 464.9H682.9m51.2 107.7H868.7m-53.2 74.7H883M519.5 663.8h69.6m-28.6 74.6H697.1m59.8 58.2H883m-92.7 58.1H883M519.5 871.2h51.2m82.4 132.9H778.2m-28.8 58.1H883' class='g1'/%3E%0A%3C/svg%3E)
Lead toxicokinetics in non-lactating ewe: A preliminary study / Nadia et al.______________________________________________________
6 of 7
[9] Johnsen IV, Aaneby J. Soil intake in ruminants grazing on
heavy metal contaminated shooting ranges. Sci. Total Environ.
[Internet]. 2019; 687:41–49. doi: https://doi.org/gnh4nw
[10] Payne J. Livesey C. High lead soils: a potential risk to animal
and public health. In: Centre for radiation, chemical and
environmental hazards. Chemical Hazards Poisons Report.
London (UK): Health Protection Agency. [Internet]. 2010 [cited
Apr 21, 2025]; 17:42–45. Available in https://goo.su/28MqwD
[11] Pareja–Carrera J, Martinez–Haro M, Mateo R, Rodríguez–
Estival J. Effect of mineral supplementation on lead
bioavailability and toxicity biomarkers in sheep exposed to
mining pollution. Environ. Res. [Internet]. 2021; 196:110364.
doi: https://doi.org/gzrq5w
[12] Sellaoui S, Boufedda N, Boudaoud A, Enriquez B, Mehennaoui
S. Effects of repeated oral administration of lead combined
with cadmium in non–lactating ewes. Pak. Vet J. [Internet].
2016 [cited Nov 13, 2024]; 36(4):440–444. Available in:
https://goo.su/jOsqs
[13] Milhaud G, Mehennaoui S. Indicators of lead, zinc and
cadmium exposure in cattle: 1. Results in a polluted area.
Vet. Hum. Toxicol. [Internet]. 1988 [cited 02 Dec, 2023];
30(6):513–517. Available in: https://goo.su/zTsYz3
[14] Rodrígues–Estival J, Barasona JA, Mateo R. Blood Pb and
δ–ALAD inhibition in cattle and sheep from a Pb–polluted
mining area. Environ. Pollut. [Internet]. 2012; 160:118–124.
doi: https://doi.org/cv6bsw
[15] Leggett RW. An Age–specific Kinetic Model of Lead Metabolism
in Humans. Environ. Health Perspect. [Internet]. 1993; 101(7)
598–616. doi: https://doi.org/cgsvpb
[16] National Research Council (NRC). Potential health risks to DOD
firing–range personnel from recurrent lead exposure [Internet].
Washington DC (USA): The National Academies Press; 2013
[cited 08 Apr 25]; 198 p. doi: https://doi.org/p9bh
[17] Rădulescu A, Lundgren S. A pharmacokinetic model of lead
absorption and calcium competitive dynamics. Sci. Rep.
[Internet]. 2019; 9:14225. doi: https://doi.org/p9bm
[18] Mehennaoui S, Houpert P, Federspiel B, Joseph–Enriquez
B, Kolf–Clauw M, Milhaud G. Toxicokinetics of lead in the
lactating ewe: variations induced by cadmium and zinc.
Environ. Sci. [Internet]. 1997 [cited Jun 27, 2023]; 5(2):65–
78. Available in: https://goo.su/8UjoBs
[19] Waldner C, Checkley S, Blakley B, Pollock C, Mitchell B.
Managing lead exposure and toxicity in cow–calf herds to
minimize the potential for food residues. J. Vet. Diagn. Investig.
[Internet]. 2002; 14(6):481–486. doi: https://doi.org/d73dx5
[20] Casteel SW, Weiss C, Henningsen GM, Brattin WJ. Estimation
of relative bioavailability of lead in soil and soil–like materials
using young swine. Environ. Health Perspect. [Internet]. 2006;
114(8):1162–1171. doi: https://doi.org/b3cffq
[21] Beyer WN, Basta NT, Chaney RL, Henry PFP, Mosby DE, Rattner
BA, Scheckel KG, Sprague DT, Weber JS. Bioavailability tests
accurately estimate bioavailability of lead to quail. Environ.
Toxicol. Chem. [Internet]. 2016; 35(9):2311–2319. doi:
https://doi.org/f8zz9t
[22] Uddin AH, Khalid RS, Alaama M, Abdualkader AM, Kasmuri
A, Abbas SA. Comparative study of three digestion methods
for elemental analysis in traditional medicine products
using atomic absorption spectrometry. J. Anal. Sci. Technol.
[Internet]. 2016; 7:6. doi: https://doi.org/gf3tj3
[23] Zhang Y, Huo M, Zhou J, Xie S. PK Solver: an add program
for pharmacokinetic and pharmacodynamics data analysis
in Microsoft Excel. Comput. Methods Programs Biomed.
[Internet]. 2010; 99(3):306–314. doi: https://doi.org/cpg7rf
[24] Fan J, de Lannoy IAM. Pharmacokinetics. Biochem. Pharmacol.
[Internet]. 2014; 87(1):93–120. doi: https://doi.org/ggjs9w
[25] Aungst BJ, Dolce JA, Fung HL. The effect of dose on
the disposition of lead in rats after intravenous and oral
administration. Toxicol. Appl. Pharmacol. [Internet]. 1981;
61:48–57. doi: https://doi.org/c69j8w
[26] Palminger–Hallén I, Jönsson S, Karlsson MO, Oskarsso A.
Toxicokinetics of lead in lactating and nonlactating mice.
Toxicol. Appl. Pharmacol. [Internet]. 1996; 136(2):342–347.
doi: https://doi.org/bk7pt2
[27] Kumar A, Kumar A, Cabral–Pinto MMS, Chaturvedi AK,
Shabnam AA, Subrahmanyam G, Mondal R, Kumar–Gupta
D, Malyan SK, Kumar SS, A Khan S, Yadav KK. Lead toxicity:
Health hazards, influence on food chain, and sustainable
remediation approaches. Int. J. Environ. Res. Public Health.
[Internet]. 2020; 17(7): 2179. doi: https://doi.org/gjqqg3
[28] Maldonado–Vega M, Cerbón–Solorzano J, Albores–Medina
A, Hernández–Luna C, Calderón–Salinas JV. Lead: intestinal
absorption and bone mobilization during lactation. Hum. Exp.
Toxicol. [Internet]. 1996; 15(11):872–877. doi: https://doi.
org/cspkbn
[29] Agency for Toxic Substances and Disease Registry (ATSDR).
Toxicological profile for lead. US Department of Health and
Human Services, Public Health Service. [Internet]. 2020; 583
p. doi: https://doi.org/gnt95d
[30] Mitra P, Sharma S, Purohit P, Sharma P. Clinical and molecular
aspects of lead toxicity: An update. Crit. Rev. Clin. Lab. Sci.
[Internet]. 2017; 54(7–8):506–528. doi: https://doi.org/gjsdk9
[31] Oomen AG, Tolls J, Sips A, Van den Hoop MA. Lead speciation
in artificial human digestive fluid. Arch. Environ. Contam.
Toxicol. [Internet]. 2003; 44:107–115. doi: https://doi.org/
bqw334
[32] Oehme FW. Toxicity of heavy metals in the environment: Part
I. New York, USA: Marcel Dekker Inc; 1978.
[33] Wu H, Meng Q, Zhou Z, Yu Z. Ferric citrate, nitrate, saponin
and their combinations affect in vitro ruminal fermentation,
production of sulphide and methane and abundance of select
microbial populations. J. Appl. Microbiol. [Internet]. 2019;
127(1):150–158.doi: https://doi.org/p9b4
[34] Blake K, Mann M. Effect of calcium and phosphorus on the
gastrointestinal absorption of
203
Pb in man. Environ. Res.
[Internet]. 1983; 30(1):188–194. doi: https://doi.org/c92n9f