' d='M0 42.3l645.9 .6' class='g1'/%3E%0A%3Cpath d='M154.9 890.5h133M208.2 996.9H327M184.6 1107.3H320.1M616.6 158.9H753.9M546.5 286.5H685.1m-53.4 162H771M649.6 517.8H768.5m-222 128.4H694m39.3-288.9H875.2M616.9 733.7H757.8M546.9 862.6H664.7m170.7 71.1h45.2M520.8 952h77.6m40.4 91.8h136M618.5 1134H756.7' class='g2'/%3E%0A%3C/svg%3E)
5 of 6
Revista Científica, FCV-LUZ / Vol. XXXV
CONCLUSION
In general, when the change in SCFA between the groups
was examined, no statistical difference was detected between
C4, C3, isovalerate, isobutyrate, and BCFA. However, although
no statistically significant, the group treated with Fer-1
compared to the C group, showed a nonsignificant increase
and in C3, isovalerate, isobutyrate, SCFA and BCFA levels and
a nonsignificant decrease in C4, C3, isovalerate, isobutyrate,
SCFA and BCFA levels in the Pak treated group compared to the
C group. The dose used may have contributed to these results.
Based on all these results, it is recommended to evaluate the
results of longer application and different doses in future studies.
In addition to SCFA, it is thought that analyzing bacteria by 16S
sequencing method will also be useful. In this way, it is clear
that therapeutic targeting of these specific bacteria and the
SCFA produced by them will be important for the realization of
successful treatment regimens, especially in patients undergoing
cancer treatment, to improve the quality of life and may improve
treatment outcomes.
short-chain fatty acids except C4, whereas Pak decreased all
SCFA.
The authors express their gratitude to the Selçuk University
Scientific Research Projects (BAP) Coordination Office for funding
this study (Project No: 25401005).
This study ethical approval (Approval no: 2024/77, date
29.11.2024) was obtained from Selcuk University Experimental
Medicine And Application Center Ethics Committee (SÜDAM).
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
Ethical Approval
Conflict of ınterest
Akbarali HI, Muchhala KH, Jessup DK, Cheatham S.
Chapter Four - Chemotherapy induced gastrointestinal
toxicities. Adv. Cancer Res. [Internet]. 2022; 155:131-
166. doi: https://doi.org/hbcjxg
Hersi F, Elgendy SM, Al Shamma SA, Altell RT, Sadiek
O, Omar HA. Cancer immunotherapy resistance: The
impact of microbiome-derived short-chain fatty acids and
other emerging metabolites. Life Sci. [Internet]. 2022;
300:120573. doi: https://doi.org/qjv2
BIBLIOGRAPHIC REFERENCES
[1]
[2]
Yang K, Li G, Li Q, Wang W, Zhao X, Shao N, Qiu H, Liu J, Xu
L, Zhao J. Distribution of gut microbiota across intestinal
segments and their impact on human physiological and
pathological processes. Cell. Biosci. [Internet]. 2025;
15(1):47. doi: https://doi.org/g9j8h3
[3]
Zhang D, Jian YP, Zhang YN, Li Y, Gu LT, Sun HH, Liu
MD, Zhou HL, Wang YS, Xu ZX. Short-chain fatty acids
in diseases. Cell Commun. Signal. [Internet]. 2023;
21(1):212. doi: https://doi.org/g2355t
[4]
Fusco W, Bernabeu-Lorenzo M, Cintoni M, Porcari S,
Rinninella E, Kaitsas F, Lener E, Mele MC, Gasbarrini A,
Collado MC, Cammarota G, Ianiro G. Short-chain fatty-
acid-producing bacteria: key components of the human
gut microbiota. Nutrients. [Internet]. 2023; 15(9):2211.
doi: https://doi.org/g8p99z
[5]
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao
Y, Chen X, Sui X, Li G. The emerging role of ferroptosis in
inflammation. Biomed. Pharmacother. [Internet]. 2020;
127:110108. doi: https://doi.org/ghq7np
[7]
Yao T, Li L. The influence of microbiota on ferroptosis
in intestinal diseases. Gut Microbes. [Internet]. 2023;
15(2):2263210. doi: https://doi.org/qjwf
Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando
R, Roveri A, Vučković AM, Bosello-Travain V, Zaccarin
M, Zennaro L, Maiorino M, Toppo S, Ursini F, Cozza G.
Insight into the mechanism of ferroptosis inhibition by
ferrostatin-1. Redox Biol. [Internet]. 2020; 28:101328.
doi: https://doi.org/gnm9qm
[8]
[9]
Li S, Zhu S, Yu J. The role of gut microbiota and
metabolites in cancer chemotherapy. J. Adv. Res.
[Internet]. 2024; 64:223-235. doi: https://doi.org/gs86n9
[6]
Wang G, Qin S, Chen L, Geng H, Zheng Y, Xia C, Yao J,
Deng L. Butyrate dictates ferroptosis sensitivity through
FFAR2-mTOR signaling. Cell Death Dis. [Internet]. 2023;
14(4):292. doi: https://doi.org/gs8nw8
He Y, Ling Y, Zhang Z, Mertens RT, Cao Q, Xu X, Guo K,
Shi Q, Zhang X, Huo L, Wang K, Guo H, Shen W, Shen M,
Feng W, Xiao P. Butyrate reverses ferroptosis resistance
in colorectal cancer by inducing c-Fos-dependent xCT
suppression. Redox Biol. [Internet]. 2023; 65:102822.
doi: https://doi.org/qjwj
Son MY, Cho HS. Anticancer effects of gut microbiota-
derived short-chain fatty acids in cancers. J. Microbiol.
Biotechnol. [Internet]. 2023; 33(7):849-856. doi: https://
doi.org/qjwp
[10]
[11]
[12]
Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H.
Paclitaxel: a review of adverse toxicities and novel delivery
strategies. Expert Opin. Drug Saf. [Internet]. 2007;
6(5):609-621. doi: https://doi.org/d53z5f
[13]
Ma Y, Yu S, Ni S, Zhang B, Kung ACF, Gao J, Lu A, Zhang
G. Targeting strategies for enhancing paclitaxel specificity
in chemotherapy. Front. Cell Dev. Biol. [Internet]. 2021;
9:626910. doi: https://doi.org/gk84v7
[14]