Los efectos de la coenzima Q10, el fullereno C60 y el ácido α–lipoico en el sistema reproductor de ratas macho púberes expuestas al bisfenol A

Palabras clave: Ácido α–Lipoico, bisfenol A, coenzima Q10, fullereno C60, esperma

Resumen

El bisfenol A está ampliamente reconocido como un importante contaminante tóxico del medio ambiente a nivel mundial, debido principalmente a sus amplias aplicaciones industriales y comerciales. El presente estudio pretendía evaluar el potencial de la coenzima Q10, el fullereno de carbono–60 y el ácido α–Lipoico, conocidos por su importante capacidad antioxidante, para reducir los efectos tóxicos reproductivos inducidos por el bisfenol A en ratas macho. Se asignó un total de sesenta ratas Sprague Dawley macho prepúberes a ocho grupos experimentales. Las sustancias se aplicaron por sonda oral a dosis ajustadas, disueltas en aceite de oliva y/o agua, una vez al día durante siete semanas. Las ratas fueron decapitadas 24 horas después de la última aplicación, tras lo cual se extrajeron sangre y tejidos testiculares para su análisis. La exposición al bisfenol A produjo una elevación significativa del nivel de malondialdehído sérico y testicular y una reducción significativa del nivel de enzimas antioxidantes. La concentración de espermatozoides en el epidídimo y su motilidad fueron considerablemente menores en el grupo expuesto al bisfenol en comparación al grupo control. Se evidenciaron marcados cambios histopatológicos en el tejido testicular, caracterizados por degeneración y una notable disminución de células germinales. Se determinó que la administración de coenzima Q10 y ácido α– Lipoico previno significativamente el estrés oxidativo inducido por el bisfenol A y las complicaciones asociadas, como la disfunción testicular y la disminución de la calidad del esperma epididimario. En conclusión, el bisfenol afectó negativamente al sistema reproductor desde el punto de vista bioquímico, histológico y reproductivo en ratas macho; la coenzima Q10, el fullereno de carbono–60 y el ácido α–Lipoico aliviaron estos efectos negativos.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ribeiro E, Ladeira C, Viegas S. Occupational exposure to bisphenol A (BPA): a reality that still needs to be unveiled. Toxics [Internet]. 2017; 5(3):22. doi: https://doi.org/p5rp DOI: https://doi.org/10.3390/toxics5030022

Murata M, Kang J–H. Bisphenol A (BPA) and cell signaling pathways. Biotechnol. Adv. [Internet]. 2018; 36(1):311–327. doi: https://doi.org/gc2nrz DOI: https://doi.org/10.1016/j.biotechadv.2017.12.002

Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, vom Saal FS. Large effects from small exposures. I. Mechanisms for endocrine–disrupting chemicals with estrogenic activity. Environ. Health Perspect. [Internet]. 2003; 111(8):994–1006. doi: https://doi.org/dksw5j DOI: https://doi.org/10.1289/ehp.5494

Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, Hataya Y, Shimatsu A, Kuzuya H, Nakao K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J. Clin. Endocrinol. Metab. [Internet]. 2002; 87(11):5185–5190. doi: https://doi.org/bptspv DOI: https://doi.org/10.1210/jc.2002-020209

Michałowicz J. Bisphenol A–sources, toxicity and biotransformation. Environ. Toxicol. Pharmacol. [Internet]. 2014; 37(2):738–758. doi: https://doi.org/f52s66 DOI: https://doi.org/10.1016/j.etap.2014.02.003

Murphy MP. How mitochondria produce reactive oxygen species. Biochem. J. [Internet]. 2009; 417(1):1–13. doi: https://doi.org/dfv9mv DOI: https://doi.org/10.1042/BJ20081386

Anet A, Olakkaran S, Purayil AK, Puttaswamygowda GH. Bisphenol A induced oxidative stress mediated genotoxicity in Drosophila melanogaster. J. Hazard. Mater. [Internet]. 2019; 370:42–53. doi: https://doi.org/gv378c DOI: https://doi.org/10.1016/j.jhazmat.2018.07.050

Varela–López A, Giampieri F, Battino M, Quiles JL. Coenzyme Q and its role in the dietary therapy against aging. Molecules [Internet]. 2016; 21(3):373. doi: https://doi.org/f8nn8b DOI: https://doi.org/10.3390/molecules21030373

Crane FL. Biochemical functions of coenzyme Q10. J. Am. Coll. Nutr. [Internet]. 2001; 20(6):591–598. doi: https://doi.org/gjtdzs DOI: https://doi.org/10.1080/07315724.2001.10719063

Tirabassi G, Vignini A, Tiano L, Buldreghini E, Bruge F, Silvestri S, Orlando P, D’Aniello A, Mazzanti L, Lenzi A, Balercia G. Protective effects of coenzyme Q 10 and aspartic acid on oxidative stress and DNA damage in subjects affected by idiopathic asthenozoospermia. Endocrine. [Internet]. 2015; 49:549–552. doi: https://doi.org/p5rw DOI: https://doi.org/10.1007/s12020-014-0432-6

Andrievsky GV, Bruskov VI, Tykhomyrov AA, Gudkov SV. Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostructures in vitro and in vivo. Free Radic. Biol. Med. [Internet]. 2009; 47(6):786–793. doi: https://doi.org/fsbt2x DOI: https://doi.org/10.1016/j.freeradbiomed.2009.06.016

Bal R, Türk G, Tuzcu M, Yilmaz O, Ozercan I, Kuloglu T, Gür S, Nedzvetsky VS, Tykhomyrov AA, Andrievsky GV, Baydas G, Naziroglu M. Protective effects of nanostructures of hydrated C60 fullerene on reproductive function in streptozotocin– diabetic male rats. Toxicology [Internet]. 2011; 282(3):69–81. doi: https://doi.org/bxjt56 DOI: https://doi.org/10.1016/j.tox.2010.12.003

El–Beshbishy HA, Aly HA, El–Shafey M. Lipoic acid mitigates bisphenol A–induced testicular mitochondrial toxicity in rats. Toxicol. Ind. Health. [Internet]. 2013; 29(10):875–887. doi: https://doi.org/p5rz DOI: https://doi.org/10.1177/0748233712446728

Korenbrot CC, Huhtaniemi IT, Weiner RI. Preputial separation as an external sign of pubertal development in the male rat. Biol. Reprod. [Internet]. 1977; 17(2):298–303. doi: https://doi.org/cvdkcz DOI: https://doi.org/10.1095/biolreprod17.2.298

Aydoğan M, Korkmaz A, Barlas N, Kolankaya D. Pro–oxidant effect of vitamin C coadministration with bisphenol A, nonylphenol, and octylphenol on the reproductive tract of male rats. Drug Chem. Toxicol. [Internet]. 2010; 33(2):193–203. doi: https://doi.org/dhdm2n DOI: https://doi.org/10.3109/01480540903286468

Güleş Ö, Kum Ş, Yildiz M, Boyacioğlu M, Ahmad E, Naseer Z, Ülker E. Protective effect of coenzyme Q10 against bisphenol–A– induced toxicity in the rat testes. Toxicol. Ind. Health. [Internet]. 2019; 35(7):466–481. doi: https://doi.org/p5r5 DOI: https://doi.org/10.1177/0748233719862475

Shila S, Subathra M, Devi MA, Panneerselvam C. Arsenic intoxication–induced reduction of glutathione level and of the activity of related enzymes in rat brain regions: reversal by DL–α–lipoic acid. Arch. Toxicol. [Internet]. 2005; 79:140–146. doi: https://doi.org/dqcwbg DOI: https://doi.org/10.1007/s00204-004-0614-8

Türk G, Ateşşahin A, Sönmez M, Yüce A, Çeribaşi AO. Lycopene protects against cyclosporine A–induced testicular toxicity in rats. Theriogenology. [Internet]. 2007; 67(4):778–785. doi: https://doi.org/fxghnh DOI: https://doi.org/10.1016/j.theriogenology.2006.10.013

Sönmez M, Türk G, Yüce A. The effect of ascorbic acid supplementation on sperm quality, lipid peroxidation and testosterone levels of male Wistar rats. Theriogenology. [Internet]. 2005; 63(7):2063–2072. doi: https://doi.org/cn6kn5 DOI: https://doi.org/10.1016/j.theriogenology.2004.10.003

Moska N, Murray E, Wakefield P, Matson P. The staining pattern of human sperm with Diff Quik: relationship with sperm head morphology and a sperm chromatin structure assay (SCSA). Reprod. Biol. [Internet]. 2011; 11(1):55–59. doi: https://doi.org/p5r6 DOI: https://doi.org/10.1016/S1642-431X(12)60064-3

Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem. [Internet]. 1966; 16(2):359–364. doi: https://doi.org/b96rpj DOI: https://doi.org/10.1016/0003-2697(66)90167-9

Sedlak J, Lindsay RH. Estimation of total, protein–bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. [Internet]. 1968; 25(1):192–205. doi: https://doi.org/csbsfm DOI: https://doi.org/10.1016/0003-2697(68)90092-4

Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium–deficient rat liver. Biochem. Biophys. Res. Commun. [Internet]. 1976; 71(4):952–958. doi: https://doi.org/d3vv59 DOI: https://doi.org/10.1016/0006-291X(76)90747-6

Goth L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta [Internet]. 1991; 196(2–3):143–151. doi: https://doi.org/fthsdb DOI: https://doi.org/10.1016/0009-8981(91)90067-M

Johnsen SG. Testicular biopsy score count – a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones [Internet]. 1970; 1(1):2–25. doi: https://doi.org/bvxfrs DOI: https://doi.org/10.1159/000178170

Jahnukainen K, Chrysis D, Hou M, Parvinen M, Eksborg S, Söder O. Increased apoptosis occurring during the first wave of spermatogenesis is stage–specific and primarily affects midpachytene spermatocytes in the rat testis. Biol. Reprod. [Internet]. 2004; 70(2):290–296. doi: https://doi.org/cjk3gk DOI: https://doi.org/10.1095/biolreprod.103.018390

Saillenfait AM, Ndiaye D, Sabaté JP, Denis F, Antoine G, Robert A, Rouiller–Fabre V, Moison D. Evaluation of the effects of deltamethrin on the fetal rat testis. J. Appl. Toxicol. [Internet]. 2016; 36(11):1505–1515. doi: https://doi.org/f86cm3 DOI: https://doi.org/10.1002/jat.3310

Adibnia E, Razi M, Malekinejad H. Zearalenone and 17 β–estradiol induced damages in male rats reproduction potential; evidence for ERα and ERβ receptors expression and steroidogenesis. Toxicon. [Internet]. 2016; 120:133–146. doi: https://doi.org/f84432 DOI: https://doi.org/10.1016/j.toxicon.2016.08.009

Chitra K, Rao KR, Mathur P. Effect of bisphenol A and co– administration of bisphenol A and vitamin C on epididymis of adult rats: a histological and biochemical study. Asian J. Androl. [Internet]. 2003 [cited May 15, 2025]; 5(3):203–208. Available in: https://goo.su/ns11m

Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser–Kuntz DR, vom Saal FS. In vivo effects of bisphenol A in laboratory rodent studies. Reprod. Toxicol. [Internet]. 2007; 24(2):199–224. doi: https://doi.org/bbp9c4 DOI: https://doi.org/10.1016/j.reprotox.2007.06.004

Liu C, Duan W, Li R, Xu S, Zhang L, Chen C, He M, Lu Y, Wu H, Pi H, Luo X, Zhang Y, Zhong M, Yu Z, Zhou Z. Exposure to bisphenol A disrupts meiotic progression during spermatogenesis in adult rats through estrogen–like activity. Cell Death Dis. [Internet]. 2013; 4(6):e676. doi: https://doi.org/p5sc DOI: https://doi.org/10.1038/cddis.2013.203

Balercia G, Mancini A, Paggi F, Tiano L, Pontecorvi A, Boscaro M, Lenzi A, Littarru GP. Coenzyme Q 10 and male infertility. J. Endocrinol. Invest. [Internet]. 2009; 32(7):626–632. doi: https://doi.org/p5sd DOI: https://doi.org/10.1007/BF03346521

Gámez JM, Penalba R, Cardoso N, Ponzo O, Carbone S, Pandolfi M, Scacchi P, Reynoso R. Low dose of bisphenol A impairs the reproductive axis of prepuberal male rats. J. Physiol. Biochem. [Internet]. 2014; 70(1):239–246. doi: https://doi.org/f5vbt5 DOI: https://doi.org/10.1007/s13105-013-0298-8

Desdoits–Lethimonier C, Lesné L, Gaudriault P, Zalko D, Antignac J–P, Deceuninck Y, Platel C, Dejucq–Rainsford N, Mazaud–Guittot S, Jégou B. Parallel assessment of the effects of bisphenol A and several of its analogs on the adult human testis. Hum. Reprod. [Internet]. 2017; 32(7):1465–1473. doi: https://doi.org/gqgk3v DOI: https://doi.org/10.1093/humrep/dex093

Nadjarzadeh A, Shidfar F, Amirjannati N, Vafa MR, Motevalian SA, Gohari MR, Nazeri Kakhki SA, Akhondi MM, Sadeghi MR. Effect of Coenzyme Q10 supplementation on antioxidant enzymes activity and oxidative stress of seminal plasma: a double–blind randomised clinical trial. Andrologia [Internet]. 2014; 46(2):177–183. doi: https://doi.org/f5r7d8 DOI: https://doi.org/10.1111/and.12062

Ahmadvand H, Tavafi M, Khosrowbeygi A. Amelioration of altered antioxidant enzymes activity and glomerulosclerosis by coenzyme Q10 in alloxan–induced diabetic rats. J. Diabetes Complicat. [Internet]. 2012; 26(6):476–482. doi: https://doi.org/f4fnnh DOI: https://doi.org/10.1016/j.jdiacomp.2012.06.004

Kim MY, Kim EJ, Kim Y–N, Choi C, Lee B–H. Effects of α– lipoic acid and L–carnosine supplementation on antioxidant activities and lipid profiles in rats. Nutr. Res. Pract. [Internet]. 2011; 5(5):421–428. doi: https://doi.org/d62dhw DOI: https://doi.org/10.4162/nrp.2011.5.5.421

Sena CM, Nunes E, Louro T, Proença T, Fernandes R, Boarder MR, Seiça RM. Effects of α–lipoic acid on endothelial function in aged diabetic and high–fat fed rats. Br. J. Pharmacol. [Internet]. 2008; 153(5):894–906. doi: https://doi.org/dtczc6 DOI: https://doi.org/10.1038/sj.bjp.0707474

Ateşşahin A, Türk G, Yilmaz S, Sönmez M, Sakin F, Çeribasi AO. Modulatory effects of lycopene and ellagic acid on reproductive dysfunction induced by polychlorinated biphenyl (Aroclor 1254) in male rats. Basic Clin. Pharmacol. Toxicol. [Internet]. 2010; 106(6):479–489. doi: https://doi.org/cttzz6 DOI: https://doi.org/10.1111/j.1742-7843.2009.00529.x

Oltval ZN, Milliman CL, Korsmeyer SJ. Bcl–2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell [Internet]. 1993; 74(4):609–619. doi: https://doi.org/bk8kvd DOI: https://doi.org/10.1016/0092-8674(93)90509-O

Caglayan C, Kandemir FM, Ayna A, Gür C, Küçükler S, Darendelioğlu E. Neuroprotective effects of 18β–glycyrrhetinic acid against bisphenol A–induced neurotoxicity in rats: involvement of neuronal apoptosis, endoplasmic reticulum stress and JAK1/STAT1 signaling pathway. Metab. Brain Dis. [Internet]. 2022; 37(6):1931–1940. doi: https://doi.org/p5sp DOI: https://doi.org/10.1007/s11011-022-01027-z

Wang P, Luo C, Li Q, Chen S, Hu Y. Mitochondrion–mediated apoptosis is involved in reproductive damage caused by BPA in male rats. Environ. Toxicol. Pharmacol. [Internet]. 2014; 38(3):1025–1033. doi: https://doi.org/f6vt9z DOI: https://doi.org/10.1016/j.etap.2014.10.018

Wang R–S, Yeh S, Tzeng C–R, Chang C. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell–specific androgen receptor knockout mice. Endocr. Rev. [Internet]. 2009; 30(2):119–132. doi: https://doi.org/fj2pf7 DOI: https://doi.org/10.1210/er.2008-0025

Teng C, Goodwin B, Shockley K, Xia M, Huang R, Norris J, Merrick BA, Jetten AM, Austin CP, Tice RR. Bisphenol A affects androgen receptor function via multiple mechanisms. Chem. Biol. Interact. [Internet]. 2013; 203(3):556–564. doi: https://doi.org/p5sq DOI: https://doi.org/10.1016/j.cbi.2013.03.013

Lee HJ, Chattopadhyay S, Gong EY, Ahn RS, Lee K. Antiandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor. Toxicol. Sci. [Internet]. 2003; 75(1):40–46. doi: https://doi.org/bqtbwj DOI: https://doi.org/10.1093/toxsci/kfg150

Publicado
2025-09-16
Cómo citar
1.
Acisu TC, Sönmez M, Akarsu SA, Dayan Cinkara S, Yüce A, Çeribaşi S, Bulmuş Özgür, Özer Kaya Şeyma, Türk G, Gür S. Los efectos de la coenzima Q10, el fullereno C60 y el ácido α–lipoico en el sistema reproductor de ratas macho púberes expuestas al bisfenol A. Rev. Cient. FCV-LUZ [Internet]. 16 de septiembre de 2025 [citado 25 de septiembre de 2025];35(3):9. Disponible en: http://www.produccioncientifica.luz.edu.ve/index.php/cientifica/article/view/44429
Sección
Medicina Veterinaria