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Abstract. Along with preoperative stress, anesthetics per se are associated 
with decreased activity of the immune system. Phagocytosis is an important 
process where particles, such as dead cells and bacteria, are eliminated from the 
organism. This process is complex and involves cell chemotaxis, tissue infiltra-
tion, several coordinated cellular events and the production of reactive oxygen 
and nitrogen species (ROS). Therefore, the aim of this review was to report the 
effects of anesthetic, analgesic and sedative agents on human cell phagocytosis. 
This review suggests that human phagocytosis processes are affected by main 
anesthetic, analgesic and sedatives agents that result in decreased chemotaxis, 
phagocytosis and ROS production. These effects may impair the anti-bacterial 
function of phagocytes. Clinical anesthesiologists should select the anesthetics 
and the anesthetic methods with careful consideration of the clinical situation 
and the immune status of patients, concerning long-term mortality, morbidity, 
and the optimal prognosis.
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Resumen. La anestesia y el estrés preoperatorio están asociados a la de-
presión del sistema inmunitario. La fagocitosis es un proceso importante des-
tinado a la eliminación de células muerta y microorganismos. Es un proceso 
complejo que involucra la quimiotaxis celular, la infiltración tisular leucocita-
ria y la activación de diversos procesos intracelulares coordinados, que inclu-
yen la producción de especies reactivas de oxígeno y nitrógeno (ERON). Por 
lo tanto, el propósito de esta revisión fue reportar el efecto de agentes anesté-
sicos, analgésicos y sedativos en la fagocitosis humana. Esta revisión sugiere 
que los procesos relacionados con la fagocitosis humana son afectados por 
los principales agentes anestésicos, analgésicos y sedativos, que inducen una 
disminución de la quimiotaxis, fagocitosis y producción de ERON y la función 
anti-bacterial de los fagocitos. Los anestesiólogos clínicos deben seleccionar 
los anestésicos y los métodos de anestesia, considerando la situación clínica y 
el estado inmunitario de los pacientes en relación a la mortalidad, morbilidad 
y pronóstico óptimo a largo plazo.
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INTRODUCTION 

Anesthetics are a diverse group of drugs 
used in the management of pain. The admin-
istration of anesthetics is necessary to pro-
vide inhibition of individual pain pathways 
(local anesthesia) or to render a patient un-
conscious so that surgical procedures can be 
carried out (general anesthesia) (1). Phago-
cytosis is a process where cells surround 
and engulf particles such as dead cells and 
bacteria. This is important both, for single-
cell organisms (to acquire nutrients) and as 
part of the immune system (to destroy for-
eign invaders). This process is complex and 
involves several coordinated events such as 
membrane remodeling, receptor motion, 
cytoskeleton reorganization and intracellu-
lar signaling (2). Before phagocytosis is ac-
complished, the phagocyte and the particle 

must adhere to each other. The mechanisms 
involved in this attachment depend on the 
chemical nature of the particle’s surface. 
The capacity of phagocytes to engulf mi-
croorganisms plays an important role in the 
immune defense (3). However, drugs that 
might impair their engulfing capacity can in-
duce immunosuppression (4). Patients that 
undergo surgical interventions are exposed 
to anesthetic and analgesic drugs during the 
procedure that, together with perioperative 
stress, may impair phagocytes function and 
expose to infections (4,5). Therefore, we con 
ducted this review to obtain information re-
garding the effects of relevant anesthetic, 
analgesic and sedative agents on human cell 
phagocytosis. Multiple literature searches 
were performed from1973 through 2019 us-
ing online databases from PubMed, Scielo 
and Bireme.
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EFFECTS OF DRUGS ON HUMAN 
PHAGOCYTOSIS

Inhaled general anesthetics
Isoflurane 
With respect to this inhaled anesthet-

ic agent, studies had shown controversial 
results. It has been reported to have no ef-
fect on phagocytosis (opsonized E. Coli) of 
human neutrophils in patients undergoing 
elective interventional embolization of cere-
bral arterio-venous malformations (6). Iso-
fluorane did not alter phagocytosis of latex 
by human monocytes (7). In vitro exposure 
to isoflurane for 90 min does not significant-
ly alter the phagocytic capacity (Escherichia 
coli) of neutrophils from women during preg-
nancy (8). Isoflurane promoted phagocytosis 
(efferocytosis) of apoptotic cells by macro-
phages, via upregulation of Mer surface ex-
pression, through AMPK-mediated blockade 
of ADAM17 trafficking to the cell membrane 
(9). In a gas concentration assay, chemilu-
minescence, superoxide production, and 
hydrogen peroxide production induced by 
opsonized zymosan as a phagocytic stimulus 
were not altered by isoflurane (10). However, 
altered phagocytic function due to this drug 
has been reported. Decreased phagocytosis 
(opsonized and unopsonized Listeria mono-
cytogenes) was reported using this drug in 
alveolar macrophages from bronchoalveolar 
lavage obtained during orthopedic surgery 
(11). Isoflurane exposure also decreased hu-
man neutrophil phagocytosis (12). 

Halothane
In general halothane induces alteration 

of phagocytic function of phagocytes. An-
esthesia with halothane induced decreased 
chemotactic, phagocytic and bactericidal 
activity in patients with pathological injury-
effected changes or due to varicose veins of 
extremities (13). Anesthesia with halothane 
caused a dose-related depressant effect on 
human neutrophil phagocytic index and a 
nitroblue-tetrazolium reduction test in pa-
tients undergoing gynecological surgery 
(14). Anesthesia with halothane induced de-

creased release of oxygen-free radicals dur-
ing the phagocytosis of zymosan A by human 
neutrophils (15). In an assay gas concentra-
tion, chemiluminescence, superoxide pro-
duction, and hydrogen peroxide production 
induced by opsonized zymosan as a phago-
cytic stimulus, were diminished by halo-
thane (10). However, in other studies halo-
thane failed to alter the phagocytic function. 
In this regard, halothane did not inhibit hu-
man neutrophil phagocytosis, degranulation 
and the enhanced non-mitochondrial respi-
ration associated with phagocytosis function 
in vitro (16).

Sevoflurane
This drug does not alter neither phago-

cytosis of human polymorphonuclear leu-
cocytes in bronchoalveolar lavage from pa-
tients under anesthesia (17) or phagocytosis 
(E Coli), and oxidative burst of circulating 
granulocytes and monocytes (18).

Desflurane
This drug does not alter phagocytosis 

of human polymorphonuclear leucocytes in 
broncoalveolar lavage from patients under 
anesthesia (17).

Enflurane
Enflurane causes significantly greater 

depression of human neutrophil phagocytic 
index and nitroblue tetrazolium reduction 
test in patients undergoing gynecological 
surgery (14) and induces decreased release 
of oxygen-free radicals during the phagocy-
tosis of zymosan A and Bordetella pertussis 
by human neutrophils (15, 19). 

Nitrous oxide
Nitrous oxide decreases neutrophil an-

tibacterial capacity in vitro. Exposure of hu-
man whole blood to nitrous oxide decreased 
the percentage of neutrophils showing 
phagocytosis, and the amount of ingested 
bacteria (20). Nitrous oxide also decreases 
release of oxygen-free radicals during serum-
opsonized zymosan and Bordetella pertussis 
phagocytosis by human neutrophils (19). 

Xenon
Phagocytosis (E Coli) and oxidative 

burst of granulocytes were reduced with xe-
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non anesthesia, whereas monocytes were not 
affected (18). However, xenon preserved neu-
trophil and monocyte antibacterial capacity 
in vitro. Exposure of human whole blood to 
xenon increased the percentage of neutro-
phils showing phagocytosis, and the amount 
of ingested bacteria. Respiratory burst activ-
ity in neutrophils and monocytes was not af-
fected by xenon (20). 

Methoxyflurane
No information was found.

Intravenous general anesthetics
Propofol
The intravenous anesthetic agent pro-

pofol is used to induce and maintain anes-
thesia during surgical or other invasive pro-
cedures and to sedate critically ill patients 
(21, 22). Previous studies have shown that 
this drug has controversial effects regarding 
the phagocytic functions. This anesthetic 
drug acts via stimulation of the β2-subunit 
of the GABAA receptors inducing impair-
ment of chemotaxis and phagocytosis (mi-
crospheres) of circulating human monocytes 
and macrophages (23-25). Propofol inhibits 
phagocytosis (latex beads) via the GABAA 
receptor and dysregulation of p130cas phos-
phorylation in macrophages from patients 
undergoing general anesthesia (26).  In vi-
tro studies have shown that propofol inhibits 
human neutrophil chemotaxis, phagocyto-
sis and reactive oxygen species (ROS) (O2-, 
H2O2, OH) production, in a dose-dependent 
manner (27). In vitro studies have shown 
that propofol diminishes human neutrophil 
and monocyte phagocytosis (E Coli) and oxi-
dative burst even in clinically concentrations 
(28). In vitro studies showed that propofol 
inhibited phagocytosis and killing of Staphy-
lococcus aureus as well as Escherichia Coli 
(29). However, other studies showed that 
propofol failed to alter phagocytosis and as-
sociated processes. In this regard, this drug 
did not alter the phagocytosis of Staphylo-
coccus aureus by human monocytes (30) or 
phagocytosis of Candida albicans by human 
neutrophils (31). Propofol does not alter 

phagocytosis of human polymorphonuclear 
leucocytes in broncoalveolar lavage from 
patients under anesthesia (17) or from pa-
tients undergoing coronary artery bypass 
grafting (32). No alteration of human neu-
trophil phagocytosis (opsonized E. Coli) us-
ing propofol, in patients undergoing elec-
tive interventional embolization of cerebral 
arterio-venous malformations, has been re-
ported (6). No alteration on phagocytosis 
(opsonized and unopsonized Listeria mono-
cytogenes) was reported using this drug in 
alveolar macrophages from bronchoalveolar 
lavage obtained during orthopedic surgery 
(11). Propofol at the higher concentration 
failed to reduce both respiratory burst and 
phagocytosis (Staphylococcus aureus) of 
human neutrophils (33). Propofol exhibited 
no significant effects on human neutrophil 
oxidative burst and phagocytosis (E. Coli) 
in patients with severe brain injury requir-
ing long-term sedation (34). Propofol, at 
clinically relevant concentrations, reduces 
chemotaxis but fail to reduce phagocytosis 
of human neutrophils (35). In addition, pro-
pofol stimulated human microglial phagocy-
tosis in vitro (36).

Ketamine
Controversial results regarding the ef-

fect of ketamine have been reported. Clini-
cally relevant concentrations of ketamine can 
suppress macrophage function of phagocy-
tosis, its oxidative ability, and inflammatory 
cytokine production, possibly via reduction 
of the mitochondrial membrane potential 
(37). Ketamine significantly inhibited both 
phagocytosis (Staphylococcus aureus and 
Escherichia coli) and bactericidal activity 
by human neutrophils (38). In vitro studies 
have shown that ketamine diminishes hu-
man monocyte phagocytosis (E Coli) at high 
concentrations (28). However, other studies 
showed no effect on the phagocytic function 
of phagocytes. In his regard, ketamine did 
not adversely affect phagocytic function of 
human neutrophils at relevant therapeutic 
concentrations (39). No depressed phago-
cytosis and ROS production of human neu-
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trophil was observed in vitro by the use of 
ketamine at clinically concentrations (40). 
Ketamine at a higher concentration fail to 
reduce both respiratory burst and phago-
cytosis (Staphylococcus aureus) of human 
neutrophils (33).

Etomidate
In vitro studies have shown that this 

drug significantly inhibited both phagocyto-
sis (Staphylococcus aureus and Escherichia 
coli) and bactericidal activity (41).

Thiopental
Thiopental at clinically relevant con-

centrations reduced both chemotaxis and 
phagocytosis of human neutrophils (35) and 
at the higher concentration reduced both 
respiratory burst and phagocytosis (Staphy-
lococcus aureus) of human neutrophils (33). 
In vitro studies showed that thiopental de-
creased human neutrophil chemilumines-
cence (respiratory burst) and phagocytosis 
(Staphylococcus aureus and Escherichia 
coli) at clinical drug concentrations in a 
dose-dependent fashion (42). According to 
this, Nishima et al (40) reported that thio-
pental was capable of decreasing at clinically 
relevant concentrations chemotaxis, phago-
cytosis, and reactive oxygen species (ROS) 
(O2-, H2O2, OH) production of human neu-
trophils. The impairment of phagocytic func-
tion (microspheres) has also been reported 
in human monocytes, mediated via stimula-
tion of GABAA receptors by thiopental (25). 
In addition, thiopental can also depress the 
phagocytosis of Staphylococcus aureus by 
human monocytes (43). In vitro studies have 
shown that thiopental diminishes human 
neutrophil and monocyte oxidative burst in-
duced after phagocytosis (Staphylococcus 
aureus and Escherichia coli) at high concen-
trations (28, 38). 

Sedatives and tranquilizers
Dexmedetomidine 
Dexmedetomidine is a highly-selective 

α2-adrenergic receptor agonist used for seda-
tion of critically ill patients in an intensive 
care setting and as adjuncts to anesthesia. 

Previous studies have shown that clinical 
doses of this drug has no effects on chemo-
taxis, phagocytosis or superoxide anion (O2-) 
production of human neutrophils, suggest-
ing that this drug may be useful in patients 
with infection, sepsis, or systemic inflamma-
tion (5). According to this, in vitro studies 
have shown that clinically relevant concen-
trations of dexmedetomidine do not affect 
chemotaxis, phagocytosis, or superoxide 
production by human neutrophils (44). How-
ever, decreased human neutrophil phagocy-
tosis of E. Coli, associated with suppressed 
respiratory burst, nitric oxide (NO) pro-
duction, and induced nitric oxide synthase 
(iNOS) activity induced by dexmedetomi-
dine have been reported (45). 

Clonidine
This is a α2-adrenergic receptor agonist 

also used as adjuncts to anesthesia. Chemo-
taxis, phagocytosis and further production 
of superoxide anion of human neutrophils, 
are not altered by the used of this drug (5) 
and in vitro studies had shown that clinically 
relevant concentrations of clonidine do not 
affect chemotaxis, phagocytosis, or superox-
ide production by human neutrophils (44). 
However, this drug inhibits phagocytosis of 
cultured human trabecular meshwork cells 
(isolated from the juxtacanalicular and cor-
neoscleral regions of the human eye) (46). 

Xylazine
This alpha2-agonist had no effects on 

chemotaxis, phagocytosis, or superoxide an-
ion (O2-) production of human neutrophils; 
the lack of effect of this drug has also been 
reported by in vitro studies (5, 44). 

Barbiturates
Methohexital 
It has been reported that this barbitu-

rate is capable of decreasing the phagocyto-
sis of viable S. aureus by human monocytes 
(43). In vitro studies showed that metho-
hexital inhibited granulocyte recruitment 
and phagocytosis activity (S. aureus) in 
a dose-dependent manner (47). However, 
other studies show that it failed to alter 
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the phagocitic function. In this regard, this 
drug did not influence human neutrophil 
chemiluminescence (respiratory burst) in a 
dose-dependent fashion (42). Methohexital 
exhibited no significant effects on human 
neutrophil oxidative burst and phagocytosis 
(E. Coli) in patients with severe brain injury 
requiring long-term sedation (34).

Pentobarbital 
This drug did not influence human 

neutrophil chemiluminescence (respiratory 
burst) in a dose-dependent fashion (42). 

Phenobarbital 
In vitro studies showed that phenobar-

bital decreased human neutrophil chemilu-
minescence (respiratory burst) in a dose-
dependent fashion (42). 

Thiamylal 
Subclinical doses of thiamylal caused 

enhancement of the human phagocytic ac-
tivity of neutrophils, however, super-clinical 
doses of thiamylal inhibited phagocytic ac-
tivity of these cells (39). 

Amobarbital
No information was found.

Benzodiazepines
Diazepam
This benzodiazepine did not alter 

phagocytic function (microspheres) in hu-
man monocytes (25). In addition this drug in 
concentration-dependently doses increased 
chemotaxis and phagocytosis in isolated 
human neutrophils by Ca2+ -independent 
mechanisms (48). However, diazepam is in-
hibitory in vitro for the phagocytic functions 
being its action mediated via specific recep-
tors on immunocompetent cells (49).

Midazolam
At clinically concentrations this intra-

venous anesthetic depress human neutrophil 
phagocytosis and further production of ROS 
(40). In vitro studies have shown that mid-
azolam diminishes human neutrophil oxida-
tive burst after phagocytosis (E Coli) at high 
concentrations (28), but failed to reduce 
both respiratory burst and phagocytosis of 
S. aureus (33). 

Flunitrazepam 
In vitro studies showed that this drug 

significantly inhibited both phagocytosis 
(Staphylococcus aureus and Escherichia 
coli) and bactericidal activity (41).

Alprazolam 
Alprazolam increases human neutro-

phil phagocytosis of bacteria and further 
killing and monocyte phagocytosis without 
modifying antibacterial activity values (50). 

Lorazepam
No information was found

Phenothiazines
Promethazine 
In general this drug alters the produc-

tion of ROS, necessary to destroy ingested 
bacteria. Promethazine predominantly af-
fected the ability of macrophages to produce 
O2- during phagocytosis (51). Promethazine 
also affected the ability of human neutro-
phils to produce O2- and hexose monophos-
phate shunt activity during phagocytosis 
(opsonized zymosan) (52, 53). 

Chlorpromazine 
Chlorpromazine increases killing activi-

ty against S. aureus phagocytosed by human 
monocyte-derived macrophages (54).

Acepromazine 
No information was found.

Opioids
Fentanyl 
Fentanyl failed to inhibit receptor ex-

pression, phagocytosis and reactive oxygen 
production by monocytes in clinically rele-
vant as well as supraclinical concentrations 
(55). Intravenous injection of fentanyl did 
not alter human neutrophil phagocytic func-
tion and superoxide anion generation (56, 
57). In addition, in vitro studies showed that 
fentanyl did not influence phagocytosis as 
well as bactericidal activity in human neu-
trophils (41). However, high-dose fentanyl 
anesthesia in patients undergoing coronary 
bypass surgery showed decreased phagocyto-
sis of zymosan, S. aureus and E. coli by hu-
man granulocytes (58). 
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Alfentanil 
In vitro studies showed that alfentanyl 

did not influence phagocytosis as well as 
bactericidal activity in human neutrophils 
(41). However, this drug alters phagocytosis 
of latex by human monocytes (7). 

Remifentanil
No information was found.
Sufentanil
No information was found.

Butyrophenones
Droperidol 
This drug is used as a sedation ad-

junct to general anesthesia. In vitro studies 
showed that droperidol caused a significant 
inhibition of phagocytosis as well as bacteri-
cidal activity in human neutrophils (41). 

Local Anesthetics
Bupivacaine
In vitro studies showed that bupivacaine 

alters phagocytic functions. In this regard, 
this drug inhibited priming of LPS on human 
neutrophils (59). Bupivacaine in a time-de-
pendent manner diminished phagocytosis, 
bacterial uptake, oxidative burst and CD11b 
expression by human neutrophils (43). Bupi-
vacaine impairs surface receptor expression 
Fc gamma receptor III (CD16), complement 
receptor 1 (CD35) and complement recep-
tor 3 (CD11b) and may thereby contribute 
to reduced phagocytic activity and oxidative 
burst (60). Other studies report different ef-
fect of this drug. In vitro studies showed that 
bupivacaine did not alter the chemotaxis, 
phagocytosis and oxidative burst of human 
neutrophils at clinically doses (61, 62). 

Lidocaine
Lidocaine inhibited adhesion, chemo-

taxis, phagocytosis, and the production of 
superoxide anion and hydrogen peroxide by 
neutrophils and macrophages (62, 63). Lido-
caine also diminished phagocytosis, bacterial 
uptake, oxidative burst and CD11b expression 
in human neutrophils, in a time-dependent 
manner (30, 61). In vitro studies showed that 

lidocaine inhibited priming of LPS on human 
neutrophils (59).

Procaine
Procaine inhibits adhesion, chemotaxis, 

phagocytosis, and the production of superox-
ide anion and hydrogen peroxide by neutro-
phils and macrophages (63). Procaine also 
inhibited the phagocytosis of latex particles 
by normal monocytes (64). In vitro studies 
showed that procaine inhibited priming of 
LPS on human neutrophils (59).

Tetracaine
In vitro studies showed that tetracaine 

inhibited priming of LPS on human neutro-
phils (59), and inhibited adhesion, chemo-
taxis, phagocytosis, and the production of 
superoxide anion and hydrogen peroxide by 
neutrophils and macrophages (63).

Mepivacaine
Mepivacaine inhibits adhesion, chemo-

taxis, phagocytosis, and the production of 
superoxide anion and hydrogen peroxide by 
neutrophils and macrophages (63).

CONCLUSIONS

The accumulated evidence described 
above suggests that human phagocytosis 
processes seem to be more sensitive to the 
main anesthetic, analgesic and sedatives 
agents, which results in decreased chemo-
taxis, phagocytosis and ROS production and 
leads to impairment of the anti-bacterial 
function by phagocytes (Table I). However, 
different results between those obtained 
from patients and those obtained from in 
vitro experiments, have been reported. Prob-
ably direct information obtained from pa-
tients before and after surgery, represents a 
closer view of real effect of anesthetic drugs. 
In addition, the attenuation of the preopera-
tive stress responses, by a combination of 
sedative drugs with general anesthesia, can 
protect surgical patients from further altera-
tion of phagocytosis processes during the 
preoperative period. This is very important 
in patients with risk of microorganism infec-



Anesthesia and immune system 67

Vol. 61(1): 60 - 72, 2020

tions. Other situation to be analyzed is the 
combination of different drugs used during 
anesthesia and the final effect of that combi-
nation and the preparation of drugs used for 
anesthesia (65). The negative consequences 
associated with preoperative immunosup-
pression, such as an increased risk of post-
operative infection, could be decreased by 
the optimal selection of anesthetics and an-
esthetic techniques. Concerning the stress 
response induced by anesthesia, intravenous 
anesthesia may be superior to inhalation an-
esthesia in reducing hypothalamic-pituitary 
adrenal axis activation (66). In the future, 
anesthetic protocols may be chosen not only 
for their anesthetic and analgesic effects, 
but also for their immunomodulatory ef-
fects, considering the underlying conditions 
for which the patients need to be anesthe-
tized (4, 67-69).

Neuraxial anesthesia provide several 
advantages over other anesthetic agents, in-
cluding decreased risk of infection through 

attenuation of the stress response and pres-
ervation of immune function (70-73). De-
spite these benefits, patients with altered 
immune status are often not considered can-
didates for neuraxial techniques because of 
the risk of infection (74).

Despite these documented effects on 
human phagocytosis, the clinical importance 
of anesthesia-mediated changes in periopera-
tive immunosupression remains uncertain. 
Currently, there are no clinical studies eval-
uating the influence of choice of anesthesia 
and analgesia on the outcome after oncologic 
surgery or in immunocompromised patients.

In general, the drugs used during anes-
thesia induce suppressed phagocytosis pro-
cesses; therefore, the anesthetic protocols 
may be chosen not only for their anesthetic 
and analgesic effects, but also for their im-
munomodulatory effects. There is evidence 
suggesting that the choice of anesthetic is 
important when considering the underlying 
condition of the particular patient.

TABLE I 
EFFECT OF ANESTHETIC, ANALGESIC AND SEDATIVE AGENTS ON HUMAN  

PHAGOCYTOSIS PROCESSES

Agents
Effect on 

phagocytosis
processes

References

Isoflurane ↓/ne
Lieners et al., 1989 (10); Carrera et al., 1993 (7); Clark et al., 
1993 (8); Kotani et al., 1998 (11); Heine et al., 2000 (6); Du et al., 
2017 (9); Koutsogiannaki et al., 2019 (12)

Halothane ↓/ne
Nunn et al., 1979 (16); Barth et al., 1987 (15); Lieners et al., 1989 
(10); Khan et al., 1995 (14); Ciepichał and Kübler, 1998 (13)

Sevoflurane ne Erol et al., 2009 (17); Fahlenkamp et al., 2014 (18)

Desflurane ne Erol et al., 2009 (17)

Enflurane ↓ Perttilä et al., 1986 (19); Barth et al., 1987 (15); Khan et al., 1995 
(14)

Nitrous oxide ↓ Perttilä et al., 1986 (19); De Rossi et al., 2002 (20)

Xenon ↓/ne De Rossi et al., 2002 (20); Fahlenkamp et al., 2014 (18)

Propofol ↓/ne

Ince et al., 1988 (24); Krumholz et al., 1994 (29); Skoutelis et al., 
1994 (35); Davinson et al., 1995 (33); Mikawa et al., 1998 (27); 
Heller et al., 1998 (28); Kotani et al., 1998 (11); Heine et al., 2000 
(6); Bali and Akabas, 2004 (23); Corcoran et al., 2006 (32); Huet-
temann et al., 2006 (34); Ploppa et al., 2008 (30); Shiratsuchi et 
al ., 2009 (26); Erol et al., 2009 (17); Wheeler et al., 2011 (25); Yu 
et al. 2011 (36); Bravo et al., 2019 (31)
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Agents
Effect on 

phagocytosis
processes

References

Ketamine ↓/ne
Krumholz et al., 1995 (38, 41); Toyota et al., 1995 (39); Davinson 
et al., 1995 (33); Heller et al., 1998 (28); Nishina et al., 1998 (40); 
Chang et al., 2005 (37)

Etomidate ↓ Krumholz et al. 1995 (38, 41)

Thiopental ↓

Salo and Perttilä et al., 1989 (19); Skoutelis et al., 1994 (35); 
Weiss et al., 1994 (42); Davinson et al., 1995 (33); Krumholz et al. 
1995 (38, 41); Heller et al., 1998 (28); Nishina et al., 1998 (40); 
Ploppa et al., 2008 (43); Wheeler et al., 2011 (25)

Dexmedetomidine ↓/ne
Nishima et al., 1999 (44); Anderson et al., 2014 (5); Chen et al., 
2016 (45)

Clonidine ↓/ne
Wang et al., 1994 (46); Nishima et al., 1999 (44); Anderson et al., 
2014 (5)

Xylazine ne Nishima et al., 1999 (44); Anderson et al., 2014 (5)

Methohexital ↓/ne
Weiss et al., 1994 (42); Huettemann et al., 2006 (34); Ploppa et 
al., 2006 (47); Ploppa et al., 2008 (30, 43)

Pentobarbital ne Weiss et al., 1994 (42)

Phenobarbital ↓ Weiss et al., 1994 (42)

Thiamylal ↓ Toyota et al., 1995 (39)

Diazepam ↓/ne
Covelli et al., 1991 (49); Marino et al., 2001 (48); Wheeler et al., 
2011 (25)

Midazolam ↓/ne
Davinson et al., 1995 (33); Heller et al., 1998 (28); Nishina et al., 
1998 (40)

Flunitrazepam ↓ Krumholz et al., 1995 (41)

Alprazolam ↑ Covelli et al., 1993 (49)

Promethazine ↓ DeChatelet et al., 1973 (53); Trush and Van Dyke, 1978 (52); Tra-
ykov et al.,1997 (51)

Chlorpromazine ↑ Ordway et al. 2002 (54)

Fentanyl ↓/ne
Perttilä et al., 1986 (58); Krumholz et al., 1995 (41); Welters et al., 
2000 (57); Yeager et al., 2002 (56); Menzebach et al., 2004 (55)

Alfentanil ↓/ne Carrera et al., 1993 (7); Krumholz et al., 1995 (38)

Droperidol ↓ Krumholz et al., 1995 (38)

Bupivacaine ↓/ne
Welters et al., 2001 (60); Mikawa et al., 2003 (61); Jinnouchi et 
al, 2005 (59); Ploppa et al., 2008 (30); Kawasaki et al., 2010 (62)

Lidocaine ↓ Mikawa et al., 2003 (61); Azuma and Ohura, 2004 (63); Jinnouchi 
et al, 2005 (59); Ploppa et al., 2008 (30); Kawasaki et al., 2010 (62)

Procaine ↓ Jurjus et al., 1988 (64); Azuma and Ohura, 2004 (63); Jinnouchi 
et al, 2005 (59)

Tetracaine ↓ Azuma and Ohura, 2004 (63); Jinnouchi et al., 2005 (59)

Mepivacaine ↓ Azuma and Ohura, 2004 (63)

TABLE I.  CONTINUACIÓN

ne: no effect.
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