A method for finding initial difference blocks for certain balanced incomplete block designs by means of partitions of elements in finite rings is given. It is shown that multiplier theory for difference sets, when expressed in terms of finite rings, can be useful in certain instances for obtaining appropriate partitions. In particular, despite the non-existence of a difference set for a \((49, 49, 16, 16, 5)\) design, one can construct a \((49, 98, 32, 16, 10)\) design by attempting the former.
1. DIFFERENCE SETS AND CYCLIC MULTIPLIERS REVISITED

Let G denote a finite Abelian group of order v (written additively). A difference set in G is a subset $D = \{d_1, d_2, \ldots, d_k\}$ of elements of G such that every non-zero group element g can be expressed in exactly λ ways in the form

$$d_i - d_j = g,$$

where d_i and d_j belong to D. It is easily verified that

$$\lambda = \frac{k(k-1)}{(v-1)}.$$

This is also a consequence of the fact that such a difference set can be used to generate the incidence matrix of a (v,k,λ) configuration by a well-known construction [1].

If G is cyclic, we refer to D as a cyclic difference set. Let $D = \{d_1, d_2, \ldots, d_k\}$ and $D' = \{d'_1, d'_2, \ldots, d'_k\}$ be cyclic difference sets on the same parameters (v,k,λ). Let ℓ be an integer such that $\gcd(\ell, v) = 1$ and s be an arbitrary integer. Then

$$E = \{\ell d_1, \ell d_2, \ldots, \ell d_k\} = \ell D$$

and

$$E' = \{d'_1 + s, d'_2 + s, \ldots, d'_k + s\} = D + s$$

are both cyclic difference sets. Then ℓ is a multiplier of the difference set if there exists an integer s such that $E = E'$.

Multipliers for cyclic difference sets form an important part of cyclic difference set theory. The reader is referred to Baumert [1] for an excellent account of that theory.

A common extension of the theory of multipliers from cyclic groups to arbitrary finite groups G is made in terms of the group algebra of G over a suitable field or ring, frequently the ring of rational integers. Although that approach does not differ greatly from that taken here, the present point of view is advantageous for the main construction of this paper. Despite the existence of certain difference sets, it is still possible, in some instances, to obtain useful information for the construction of certain designs.
2. RINGS AND DIFFERENCE SETS

Every finite Abelian group can be written as the additive group of a commutative ring with identity. Indeed, since every Abelian group can be written as the direct product of cyclic groups, the direct product of corresponding modular rings would serve the purpose. There are in general many rings which can be associated with each Abelian group; often others than those mentioned above are more convenient. Our theory deals with an arbitrary ring with identity. Although it is unnecessary for many theorems, we assume that the ring is commutative since this is the case in practice.

Now let \(R \) be a finite commutative ring with identity. Any ring referred to henceforth is assumed to be of this type. The additive period of 1 is the characteristic of the ring, and if the ring has characteristic \(m \), then we can view the ring of integers modulo \(m \) as a subring \(M \) of \(R \). Indeed \(M \) is the subring generated by 1. We refer to \(M \) as the integer ring of \(R \), and identify the integers in \(R \) with the corresponding rational integers whenever convenient. Clearly if \((t, m) = 1 \), \(t \) is invertible in \(R \). For notational convenience we denote an integer in \(R \) by a lower case Latin letter, and use the same symbol if we are viewing this element as a rational integer. Arbitrary elements of \(R \) will be denoted by lower case Greek letters.

Let \(D \) be a difference set in (the additive structure of) a ring \(R \). Let \(t \) be an integer in \(R \). Then \(t \) is a multiplier of \(D \) if there exists an element \(\alpha \) in \(R \) such that \(tD = D + \alpha \).

A multiplier \(t \) is said to fix a difference set \(D \) if \(tD = D \).

The following results are cited without proof. They are essentially variants of standard results obtained by employing the group algebra.

Lemma 2.1 Let \(R \) be a ring of characteristic \(m \). If \(t \) is a multiplier of a difference set \(D \) and if \((t - 1, m) = 1 \), then there is a difference set \(D^* \) that is fixed by \(t \).

Lemma 2.2 Let \(D \) be a \(\{v, k, \lambda\} \) difference set in a ring \(R \) with
character set \(C\) and characteristic \(m\). Let \(n\) be a product of distinct primes such that \(n \mid k - \lambda\), \([n, k] = [n, m] = 1\) and \(n > \lambda\). If every prime divisor \(p_j\) of \(n\) has the property that there exists an integer \(a_j\) such that \(p_j^{a_j} \equiv t\ (\text{mod} m)\), then \(t\) is a multiplier of \(D\).

3. ADJUGACY CLASSES AND THE MAIN CONSTRUCTION

Let \(R\) be a finite ring with identity and let \(R^*\) denote the set of non-zero elements of \(R\). Let \(\alpha\) be an invertible element of \(R\), and \(S\) be a subset of \(R^*\). Then we denote \(\{\alpha \delta : \delta \in S\}\) by \(\alpha S\). Let \(\pi = \{P_1, P_2, \ldots, P_n\}\) be a partition of \(R^*\). Then \(\pi\) is said to be adjugacy partition for \(\alpha\) if for each \(P_j \in \pi\) there is a part \(P_j\), such that \(\alpha P_j = P_j\). Clearly \(\alpha \pi = \{\alpha P_1, \alpha P_2, \ldots, \alpha P_n\}\) is a permutation of \(\pi\). Note that a given \(\alpha\) may have several adjugacy partitions; every partition is an adjugacy partition for the identity element of \(R^*\). Given a partition \(\pi\) we refer to any invertible element of \(R^*\) for which \(\pi\) is adjugacy class as an adjugate of \(\pi\). Clearly the set of adjugates of any fixed permutation \(\pi\) is a subgroup of the group of units of \(R\).

Let \(M\) denote any multiset of elements of \(R^*\) and \(\pi\) be a partition of \(R^*\). Then \(M\) is said to be conformal with \(\pi\) if for each part \(P_j\) there exists a non-negative integer \(\xi(P_j)\) such that each member of \(P_j\) occurs in \(M\) with frequency \(\xi(P_j)\). Clearly if \(M\) and \(\pi\) are conformal, so are \(M\) and \(\alpha \pi\) where \(\pi\) is an adjugacy class for \(\alpha\).

Note that the notation \(P_1, P_2, \ldots, P_n\) for the parts of \(\pi\) implicitly establishes a bijection between the parts of \(\pi\) and \(N^* = \{1, \ldots, n\}\). Hence, given \(\pi\) and \(M\) conformal, and \(\alpha\) adjugate to \(\pi\), we can define a function \(g_\alpha\) from \(N\) to the non-negative integers by the rule \(g_\alpha(j) = \xi(P_j)\) where \(P_j\) is the pre-image of \(P_j\) under \(\alpha\). (Technically, \(g\) is a function of \(\pi\) and \(M\) as well as \(\alpha\), but these are omitted as there is no danger of ambiguity). We define the vector \(V_\alpha\) to be the \(n\)-tuple \(\{g_\alpha(1), g_\alpha(2), \ldots, g_\alpha(n)\}\) (with the same caveat regarding \(\pi\) and \(M\)).
THEOREM 3.1 (Main Construction). Let R be a finite ring with identity and π be a partition of R^*. Let B be a k-subset of R^* such that the multiset M of differences of distinct members of B is conformal with π. If there exists a set $\{\alpha_1, \alpha_2, \ldots, \alpha_t\}$ of adjugates of π with vectors V_{α_i} and a set of non-negative integers $v_{\alpha_i}, i=1,2,\ldots,t$ such that $\sum_{i=1}^{t} e_{\alpha_i} V_{\alpha_i} = (\lambda, \lambda, \ldots, \lambda)$, then there exists a balanced incomplete block design π, $|p|$ with parameters

$$\left(|R|, |Q|, \sum_{i=1}^{t} e_{\alpha_i} e_{\lambda} k, \sum_{i=1}^{t} e_{\alpha_i} e_{\lambda} k, \lambda \right).$$

Proof: Consider the multiset I of "blocks" $\alpha_i B$, $i=1,2,\ldots,t$ where $\alpha_i B$ is taken with frequency e_{α_i}. Consider the differences generated by these blocks. If d belongs to P_λ, then it occurs as a difference $a_{\alpha_i}(i)$ times in the set of differences of $\alpha_i B$, and hence $\sum_{i=1}^{t} e_{\alpha_i} a_{\alpha_i}(i)$ times as a difference of elements in the multiset I. Hence I is a set of initial blocks [2] for a design with the specified parameters. \(\square\)

4. APPLICATIONS

Clearly the difficulty in applying Theorem 3.1 is in finding appropriate adjacency partitions and adjugates. Sometimes these can be associated with multiplier orbits in "failed" difference sets. We illustrate by showing the existence of a design with parameters $(49, 98, 32, 76, 10)$ which can be obtained by examining a "failed" difference set $(49, 16, 5)$. There is no $(49, 16, 5)$ difference set in either \mathbb{Z}_9 or $\mathbb{Z}_7 \times \mathbb{Z}_7$. However, let us assume that such were to exist in $\mathbb{Z}_7 \times \mathbb{Z}_7 = G$. We may view this group as either the additive group of the Galois field $GF(72)$ or the ring product $R_{7,7} = \mathbb{Z}_7 \times \mathbb{Z}_7$. Let us first consider G as the additive group of $GF(7^2)$. In this ring the integer subring is the ground field $GF(7)$. Now take $p = 11$. Clear-
ly \(\{11,7\} = 1\) and \(7 < 11\). Hence \(11 = 4\) is a multiplier. Moreover \(\{3,7\} = 1\). Hence any difference set would be fixed by \(4\). By division by a suitable factor we can assume that \(1 \in \mathcal{D}\).

Hence \(1, 2, 4 \in \mathcal{D}\), since these are the powers of \(4 \mod 7\). These are, of course, the quadratic residues \(\mod 7\). Since \(4\) has multiplicative period \(3 \mod 7\), \(\mathcal{D}\) would also contain \(0\) and \(4\) other orbits of length \(3\). Hence \(\mathcal{D}\) would have the form

\[
\{(0,0), (1,0), (2,0), (4,0)\} \cup \bigcup_{i=1}^{4} \{(a_i, b_i), (2a_i, 2b_i), (4a_i, 4b_i)\},
\]

where \((a,b)\) is a member of \(\mathbb{Z}_7 \times \mathbb{Z}_7\), and we identify the ground field \(GF(7)\) with the first component.

Now the set \(R_i = \{b_i, 2b_i, 4b_i\}\) is the set of residues \(\mod 7\) if \(b_i\) is a residue; it is the set of non-residues \(\mod 7\) if \(b_i\) is a non-residue, and is \(\{0\}\) if \(b_i = 0\). Continuing by the criterion that \(\mathcal{D}\) should behave as much as possible as a difference set, we decide that \(b_i \neq 0\), for \(i = 1, 2, 3, 4\).

Indeed, if some \(b_i \neq 0\), then \((y,0), y \in GF(7)\) is a subset of \(\mathcal{D}\). (The first components of such an orbit must constitute the non-residues \(\mod 7\), since \(\mathcal{D}\) contains no repeated elements). Hence each difference \((y,0), y \neq 0\), would occur \(7\) times in \(\mathcal{D}\), contrary to the assumption \(\lambda = 5\). In fact, each pair \((y,0), y \neq 0\), would have to occur as a difference \(5\) times, and hence \(0\) would have to occur as a difference \(30\) times in the second component of \(\mathcal{D}\). It already occurs \(12\) times because of the presence of \(Z = \{(0,0), (0,1), (0,2), (0,4)\}\). Since \(b_i \neq 0\), a second component of \(\mathcal{D}\) can not occur as a difference within \(R_i\). Let \(X(a) = 1\) if \(a\) is a residue \(\mod 7\), and \(X(a) = -1\) if \(a\) is a non-residue \(\mod 7\). Then the differences between \(R_i\) and \(R_j\) would have to have either zero or six second components of \(\mathcal{D}\) according as \(X(b_i) X(b_j) = 0\) or \(1\) respectively.

Consider the following table.
Thus either one or three of the b_i would have to be a residue. Similar analysis show that exactly one of the a_i, say a_1, would have to be 0. Moreover, precisely zero or two of the remaining a_i would have to be a residue. Let $A(D)$ denote the number of a_i that are residues in D, and $B(D)$ the number of b_i that are residues in D. There are two possible cases, depending on whether or not b_1 is a residue.

CASE 1. b_1 is a residue. Let $Z^* = Z \cup \{(0,1), (0,2), (0,4)\}$. Let $D^* = D - Z^*$

Then the following cases are possible.

<table>
<thead>
<tr>
<th>$A(D)$</th>
<th>$B(D)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>0</td>
</tr>
<tr>
<td>A_2</td>
<td>0</td>
</tr>
<tr>
<td>A_3</td>
<td>2</td>
</tr>
<tr>
<td>A_4</td>
<td>2</td>
</tr>
</tbody>
</table>

Let us denote by RR, RN, NR and NN the cases in which a_i, b_i are both residues, a_i is a residue, b_i is a non-residue, etc. This leads to the following distributions.

<table>
<thead>
<tr>
<th>A_i</th>
<th>NN</th>
<th>NN</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>NN</td>
<td>NR</td>
<td>NN</td>
</tr>
<tr>
<td>A_2</td>
<td>NN</td>
<td>NR</td>
<td>NN</td>
</tr>
<tr>
<td>A_3</td>
<td>NN</td>
<td>NR</td>
<td>NN</td>
</tr>
<tr>
<td>A_{u1}</td>
<td>RR</td>
<td>RR</td>
<td>NN</td>
</tr>
<tr>
<td>A_{u2}</td>
<td>RN</td>
<td>RR</td>
<td>NN</td>
</tr>
</tbody>
</table>
By the symmetry between components in \(\mathbb{Z}^* \), we see that cases \(A_2 \) and \(A_3 \) are equivalent.

CASE 2. \(b \) is a non-residue. Here we note that if any difference set \(\mathcal{D} \) in \(\mathbb{Z}_7 \times \mathbb{Z}_7 \) is multiplied by an invertible element in the corresponding direct product of rings, the result is also a difference set. By switching to this ring we see that if \(\mathcal{D} \) were a difference set corresponding to case 2, multiplication by \([1,3]\) would give a difference set corresponding to case 1. Thus we need only consider distributions \(A_1, A_2, A_3, A_4, 2 \).

However it is only necessary to consider distribution A for our present purposes. Since there are only nine distinct pairs of "type" \(MN \), and nine such pairs are required, we have a unique completion of the candidate difference set to \(\mathcal{D}_1 = \{(0,0), (0,1), (0,2), (0,4), (1,0), (2,0), (3,3), (3,5), (5,3), (5,5), (5,6), (6,3), (6,5), (6,6)\} \). But \(\mathcal{D}_1 \) is not a difference set, since \([1,1]\) is represented as a difference only 4 times, whereas \([1,3]\) is represented 6 times. The set \(\mathcal{D}_1 \) is still useful nonetheless. If we view \(G \) as the direct product of rings \(\mathbb{Z}_7 \times \mathbb{Z}_7 \cong R \), we define a partition \(\pi \) of \(\mathbb{R}^* \) as follows. (Result that if \(a \in \mathbb{Z}_7^* \), then \(\chi(a) = 1 \) if \(a \) is a quadratic residue, and \(\chi(a) = -1 \) otherwise). Let \(P_1 = U_{\alpha \in \mathbb{Z}_7^*} \{(0,\alpha), (\alpha,0)\} \), \(P_2 = \{(a,b) : a,b \in \mathbb{Z}_7^*, \chi(ab) = 1\} \), and \(P_3 = \{(a,b) : a,b \in \mathbb{Z}_7^*, \chi(ab) = -1\} \).

We show that \(M \), the multiset of differences of \(\mathcal{D}_1 \) is conformal with \(\pi \). Noting that \(R = \{1,2,4\} \) and \(N = \{3,5,6\} \) are \([7,3,1]\) difference sets in \(\mathbb{D} \) it is trivial that every element of \(P_1 \) occurs precisely 5 times in \(M \). Now each element of the form \((a,b) \), \(a,b \neq 0 \) is represented as a difference of the members of \(N \times N = H \). Now let \(\mathcal{D}_1 - H = K \). Then clearly no member of \(P_2 \) can occur as a difference of members of \(K \). Moreover since \([R-N]\), the multiset of differences between \(R \) and \(N \) in that order can be written in the form \(R + 2N \), each member of \(P_2 \) occurs exactly 3 times as a difference between elements of \(H \) and \(K \) in some order. Hence each member of \(P_3 \) occurs precisely 4 times in \(M \). Now consider any member of \(P_3 \). It occurs precisely once as a difference of members of \(K \). Further, since \([N-R] = N + 2R \), every element
of P_3 can be written precisely 4 times as a difference between members of H and K in some order. Therefore each member of P_3 occurs 6 times in M. In summary, \{\{P_1\} = 5, \{P_2 = 4\}, \{P_3\} = 6\}. Now clearly \{(1,1)\} and \{(1,3)\} are adjugates of π, with \{(1,3)P_1 = P_1\} and \{(1,3)P_2 = P_3\}. Moreover $V_{\{1,1\}} = (5,4,6)$ and $V_{\{1,3\}} = (5,6,4)$. Applying theorem 3.1, we see that \mathcal{D}_1 and $\{(1,3)\mathcal{D}_1\}$ are a pair of initial blocks for a $(49, 98, 32, 16, 10)$ BIBD. This design is listed as unknown in the catalogue of Collens [3]. The set \mathcal{D}_1 is not the only candidate that is conformal with π. Many of the other orbit structures of the other distributions of this section work as well, illustrating the tendency of multiplier orbits to correspond to adjacency partitions. In those instances when the orbit lengths are incompatible with k, however, the present techniques to not apply. For example, consider the case of a $(121, 16, 2)$ difference set in $\mathbb{Z}_{11} \times \mathbb{Z}_{11}$. In this case there would be a difference set fixed by 7. But 7 is primitive in $GF(11)$ hence it has period 10. Since $k = 16$, no attempt at a "multiple copy" of the corresponding design is possible by the preceding methods.
REFERENCES

