Rev. Téc. Ing,, Univ. Zulia
Vol. 7, N2 1, 1984

J.M. Molines

Dpto.de Hidrdulica-Escuela Civil

Facultad de Ingenieria-Universidad del Zulia
Maracaibo - Venezuela

Section Ondes et Marées
Institut de Mécanique de Grenoble
Francia

ABSTRACT

Equations of motion are developped in the gen-
eral frame of the shallow water theory and for the
case of a two-dimentional two-layer irrotational
fluid. The solution is expressed as a cnoidal
internal wave and solitary wave is found as a lim-
it.

Laboratory experiments were carried out in &
two~dimensional oscillating tank, to test the va-
lididy of the theoretical solution.

RESUMEN

Las ecuationes de moyimiento se han desarro-
1lado de acuerdo a la teoria de agua poco profunda
en el caso de fluidos irrotacionales en dos capas.
La solucidn se expresa como una onda cnoidal inter-
na y en el limite se consigue una onda solitaria.

Se llevaron a efecto experimentos en laborato-
rio en un tanque bidimensional oscilatorio para ve-
rificar la validéz de la solucidn tedrica.

1) INTRODUCTION

The study of internal waves has been carried
out since many years by the '"waves and Tides sec—
tion" of the Institut de Mécanique of Grenoble,
The previous works dealt with linear internal waves
in a two-layer fluid, taking into account the ef-
fects of rotation. The results of Suberville (1974)
have shown a very good agreement between the theory
and the experiments, This linear theory was only
relevant for the case where the depth of the wupper
and lower layer were equal (H;=Hy). Tn the other
cases, (H; # Hp), the phenomenon is very different,
and the theoretical development must include non-
linear terms. The case of a non-linear internal
wave is now studied, omiting the effects of rota-
tion. (The study with rotation will be  performed
later).

The equation of motion are developped in  the
general frame of the shallow water theory,according
to the results of Germain (1967) and Helal (1979).

SOME ASPECTS OF A TWO-LAYER, SHALLOW
WATER NON-LINEAR INTERNAL WAVE,
IN A RECTANGULAR TANK

This expansion method leads to an analitic solution
for the first order term, expressed with a Jacobi
elliptic function sn.

Experiments were carried out to test the wva-
lidity of the solution. Some observed pecular fea-
tures are then detailled.

IT) APPLICATION OF THE SHALLOW WATER THEORY TC THE
CASE OF A TWO-LAYER FLUID.

1) Notation :

The notations are precised on Fig.l.

y=t (x,1)
y=h(x,t)

/

2) Equation of motion :

Using the Fuler representation, the general
equations can be written for each layer, using the
irrotational assumption :

a) Dynamic equation :
¢ . ag o9 .

E AN | 44 3: 24 Pi . .
V[_+.._ + (—= + 4 = }= = y
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L) Kinematic equation :

3%

e
Q>

(i=1,2) (2)

0x? ay2

¢) Boundary conditions :
The boundary conditions are of two types.

i) At rigid boundaries,
yvanishes and we haye :

the normal velocity

~ at the bottom

(8]

2 i 0 y=0 (3)
ay

- at the ends of the tank
".“:i B x=0 -1 (4)
—= =10 iy (i=1,2)

ii) At free boundaries (free surface and in-
terface) two conditions are imponed
- a pressure condition which expressed
that the free surface is  an isobaric
surface and that the pressure is the
same on both sides of the interface (no
superficial tension).
According to (1) these conditions lead

to the following equations :

a‘t‘: 1 g at a':l 2y
T E’L(*g;) + (=) |} + gf(x,t) = Cte (5)
' Y y=f(x,t)
3t 1 1 2¢1.2 9%y 5.
1 [‘3%‘+ E‘_(‘g;) +(—7—021+ g hix,t) + C1 } o=
4 y=h(x,t)
a¢2 I p a¢2 2 af 2 2,
g Feed o bgd + (-3;0 ] +gh+Cyl (6)
y=hy (x,¢£)

- a velocity condition which expressed
that the free surface and the interface
are impervious

%1 af *1 o
=3 % T3 y = £(x,t) ¢!

3y 9x  9X It

Mi_oh i, ok

i = h(x,t (8)
dy  9x ox ot ¥ at)

(i=1,2)

3) Parameters distorsion and solution.

We now introduce the new variables

XA = €X

y=y
T = ¢t

wherc € is a small stretching parameter. ..s €  1is

small, the different unknown can be  expanded eh
asymptotic expansion :
w  Zntl (2n+1) A
¢i =1 ¢ ¢ (o)
0
- 2 S o1, S
RS At ) (11)
_ “®  2n 5 _
hGe,r) = I e A g (12)
Then, using the standard procedure  of this

method, as shown with many details in (Helal & Mo-

lines, (1981)), we arrive at the final result
©1-205) 2
2) — =
h( )(X,T) T COL[(3k )[Snz(N(x — ety k%) +
g(P2- P1) 2
1+k
sn2(N(x + c1), kz)} -2} (13)
where
N = %. /=3h0
1+k2
All the parameters introduced in this rela-
tion are calculable since the physical parameters

of the interface are known, namely Hy, Ho, Py, P2.

(cf. Helal & Molines (1981)), More precisions
given in appendix I,

This first order solution will now  be
with laboratory experiments.

are

compared
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ITI) EXPERIMENTAL INSTALLATION

We have used the installation previously util-
sed by Suberville and described in (Chabert d'Hie-
res & Suberville (1974)). A synoptic diagramm of
the installation is shown in Fig. 2. Mainly there
are three distinctive parts :

1) a mechanical part.

This part is mainly conmstituted by an oscilla-
ting tank (or canal) and its system of motion. The

tank o6scillates around an horizontal axis with an
amplitude and a period which can be regulated by
the system of motion.

2) a hydraulic part.

Two tanks containing fresh, ungased water and
brine respectively allow the filling of the canal

r_ ELECTRONIC PART

Data Treotment Analogous

Micro - Computer {3 Digital

152 fop!/cyoq rl top / cycle ]

>
=
S e e S i PO S

MECHANICAL PART
i Motor Ry Rz CL i
| P —
I Requlation s Meosure of Tey

-~
I ~
L. -
— Fig. N® 2 —

Follower |
/ Fresh Woter
Py
Brine
P,

with two layers of fluid.

The brine, whose density is adjusted in the outside
tank, is injected through the bottom of the canal.
With this system of injection, the interface thick-
ness is almost constant and about 6 mm.

3) an electronic and informatic part.

Informations from the internal wave are gath-
ered using an interface follower. This apparatus,
which is roughly an enslaved conductivimeter, is
able to follow a layer of given conductivity with
a great accuracy : ¥ 0.1 mm for the interface level
at about 1/3 s, Recording can be done hoth directly
by a micro-computer and on a graphic recorder. A
signal is generated in synchronism with the  tank
movement. Data are taken by the computer at a sam-
ple of 152 points per period.

HYDRAULIC PART

l

I

|
Interface | I

|

|

Ry, Rz = Reductors
Cl...........Mognetic Clutch
(A).......Axis of the tank
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1V) EXPERIMENTAL RESULTS

We will present here, the most typical experi-
mental results that we found. The first one deals
with the effect of the tank oscillation on the
standing wave. The second one shows that a very
good agreement between theory and experiments 1is
found in a large range of the characteristic para-
meters. Finally, the third one precises the experi-
mental suitable conditions to generate multi- soli-
ton internal wave in our tank.

1) Effect of the tank oscillation on the wave,

The internal wave is generated in the tank
when this one is rocked around its axis at a period
T _ ,which is as near as possible of the eigen
baroclinic period of the tank, T._.

Obviously, as we deal with non=linear waves, Tp

greatly depends on the wave amplitude Aj of the in-
ternal wave.

In order to determine if, whether or not, Tox=
T, , we introduce the notion of phase-shift between
the wave and the oscillation. The condition Tey=Tp
is realized when the wave and the oscillation of
the tank are in quadrature, i.e., when the  phase-
shift is 90°. We will see in 3) what are the ef—
fects on the wave shape when this condition is not
realized.

We must note nhe.e, that this way of determi-
ning Tex 1S very accurate because the phase - sghift
is a very sensitive parameter. Practically, for a
given amplitude of the wave, we modify the Tox
until the condition on the phase-shift is filled.In
the following and in 2) T, is supposed to follow
these conditions.

We have experimentally shown that the measured
wave (Fig. 3) can be interpreted as a superposition
of a main cnoidal wave (Fig. 4) with a small ampli-
tude sine shape wave (Fig. 5). This last wave is
supposed to be linked with the tank movement
because it has a 0°phase-shift with the tank move-
ment. On the other hand, the main cnoidal wave
(Fig. 4) has a 90°phase-shift with the tank move-
ment. But & more interesting feature is that the
sine shape wave can be estimated by measuring the
wave when the exitation period T is abour 10%
less than the eigen period T_. So if we mesure the
wave W) when Tex=Tp and then the wave Ws when Tex=
907 T, we cdn compute the wave W=Wi-W, . We will
serve as a basis for the comparison with the theo-
retical solution. The difference W;-W; is computed
points by points for each value.

2) Comparison between W and the theoretical splu-—
tion.

From (13) it can be seen that the wave— lenght
of the theoretical solution is

ﬁqma
|
|

S

A = 4K (k)

The theoretical wave amplitude at one end of the
tank is given by the relation

2 cafpi~*p2)
ik (15)

Atz
(1+?)  glpp-p1)

As we have a standing wave A=2L where L is the

lenght of the tank. The physical wave amplitude is

known from the experiments and we impose Aj = Ag.

So finally, we have the relation :

Aithg(Dz—Dl)

e e e i 1
32 ¢ (App0y) e

K2k2

Since the function K2k2(k2) is bijective, relation
(16) leads to a well defined value of k? and then
we are able to compute hy from (13).

Some comparison are shown in fig. 6 to fig. lO.

For certain experiments the agreements is
quite perfect (Fig. 6 -7 —8). On the other
hand, in some extreme experimental conditions, the
comparison is not so good. The interpretation of
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these differences differs if we are in a strongly
non-linear area or at the opposit, in a slightly
non-linear or quasi linear case. It has been shown
bv many Authors (e.g. Lee & Beardsley (1974)) that
[he solitary wave evolves from a balance between
non-linear effects and dispersive effects. The ra-
tio of the non-linear effects to the dispersive ef-
fects (Ursell number U) give us an evaluation of
this balance. For very high Ursell number (Fig. 9),
the non-linear terms of higher order are not negli-
geable and this explains the shape of the differ-
ance, (A calculus, made by Laitone (1960)) of the
higher terms for a surface wave had shown such a
behaviour.)

> — b
by —— o
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At the opposit, for small Ursell number, (Fig.
10), the influence of dispersion is to spread out
the wave and the calculations give us a  thinner
wave. This latter effect is not so clear and addi-
tional experiments are to be done to conclude fur-
ther on.

1
B

SATECAAS
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1) Multi-soliton internal wave.

It is well known now (e.g, Hammack & Segur
(1974), rhat solitary waves tends to break in pack-
et of solitons under certain conditions. This dis
true For surface wave but also for internal wave as
many observations in the nature have shown(e.g.Apel
& Al. (1973), Osborne & Burch (1980)). In the case
of a progressive wave, since the works of Gardner
& Al. (1967), it is possible to calculate the fis-
sion of a solitary wave using the inverse  scat-
tering method.

In our case, where we have a standing wave, in
an oscillating tank, the boundary conditions raise
some mathematical difficulties hecause all the
houndaries are moving. So, the mathematical work
is no longer developped and, here, we are only
giving experimental results.

In fig. L1, we present different recording of
the internal wave in function of time. The only
parameter which changes from one draw to another is
the exitation period. The following  features are
brought to attention :

— For Toy=Tp , only one solitary wave envolves and
it can be described by the theory (ef 52).

- 1f Tex increage, there is a fission of the soli-
tary wave into numerous internal solitons and the
phenomenon get stronger and atronger for increasing
Tay+ On the order hand the wave amplitude decreases
a little.

= Now, if T,y decreases (in comparison with Tp),the
opposit phenomenon occurs : the wave amplitude de-
creases and the internal wave slightly takes the
shape of a sine wave, as mentioned above (for Tgu=
90% Tp).

Also of note is the phase-shift of the wave.
In the right lower cormer of fig. 11, we give a di-
agram of the position of the tank during a period
of oscillation, and the vertical lines are related
with the extreme positions of the tamk  movement.
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When T increases, the phase shift increases. When
Tex decreases, the phase shift decreases and is
nearly 0 for T,,=907 Tp.

These results demonstrate the great importance
of Tex for experiments as described in § 2.

‘T;;ﬁ[ac.f . T,,-S&ZF

[ 1.1?-59.9r: T

Tp = 58.1sec
~ Fig N° 11 —

V) CONCLUDING REMARKS

We have seen that the theoretical  works of
Germain (1967) and Helal (1979) have found a good
confirmation for numerous experiments.

To complete this work, it will be interesting
to solve the problem of the moving boundaries and
to extend this study to the rotating fluids. The
study of this latter problem will be performeq in a
larger tank. A similitude with Ocean motion will be
possible then, including the effects of Earth'rota-
tion on the flow.
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VI APPENDIX

Eq. 13 gives us the expression of h<:

= [ Ry=4P2 ] k2 | =
b G, 7)=| : quf(%y)[sn O (x-ct) ,k2) +
‘g(‘?}'ﬂ?)
_ 1

an(N(x+cr),k2)l—2) (13)
In this equation, we deal with the elliptic
Jacobi function sn, which depends on two para-
meters : sn (u,k?). The first one is 1 time-type

parameter. The second one is a shape parameter. For

k%=0,sn(u,0)=sin(u), (sine shape wave) and for kZ =
1, sn(u,1)=14th?(u) (solitary-wave shape).

For a particular case, parameter k2 is implic-
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itly determined from the wave length A and from the

internal wave amplitude Ain

In fact we have :

(A-1)

(a-2)

where K is the complete elliptic integral

A.
in

A

first kind.

(a-3)

(A-4)

(A-5)

(A-6)

(A=7)

Hey

1]

il

6 (

4K

"

Parameters A, & ,
parameters, as follow :

Hy + Hy

(1+k4)
=3Aun

depend only

kZ

Sy ae ——

8(0,—P,)

1+k?

2 [HU - JuZ-amm, L. . l
2

c?~ gy

gHy

“

Mz

=T

where
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4
rep, r AHz

¥ o e
a-8) M = |l Zg(yz Tt e,

(‘Zrm H3— Ha
- 0 2

0y (2y= Hz))]—(ﬂz- 8(02‘01)). 3

: 5 H (p -)xp )
Y 2l cZ 9, 271 "M27,
2 (H_-Hp)- (H+ G,y
Cz"‘\ 1171;'1 =
= G A
0 PPy
&35 :
a9 M = l 2o+ 200 40y | -
(82" ]
c2py cps (A43) (A-1)
(Hp~ 8(02’01)) y gloo—ny) )

Elimination of ¢ between eq. (A-1) and (A-2)
zives the following equation :

Z g
(A-10)  K2k2= P &g o)
16 ¢ (py1-Xe2)

The function K2k? is bijective function so
that eq. (A-10) defines implicitly only wvalue of
k“., Then, using this value in eq.(A-1) we get a .

Computation of elliptic functions can be done

following algorism given in ABRAMOVITZ's hand- book
of mathematical functions.
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