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The main object of this paper is to obtain the
rate of convergence of Fourier series of a function
of Wiener's class. From our theorem we can deduce a
generalized version of a theorem of Wiener.

El objeto principal de este trabajo es conse-
guir la rata de convergencia de serie de Fourier
de funciones de clase Wiener. Se da una versién
generalizada del teorema de Wiener.

1. INTRODUCTION

t £ be a 2n-periodic function defined on

[0,27] We set

b 1/p

n
V(E) = sup{ (e - £e; )P
a i=1

(1 <p<e),

where suprema has been taken with respect to all
partitions P : a = to<t; <ty <... tgp=Db pofany
segment [a,b] contained in 60,2 ﬂ]. We call Vp (£)
the p~th total variation of f on [a,b|. If we? de-
note p-th total variation of £ on [0,27] by Vp(f),
then we can define Wiener's class simply by

v ={f:vp(f) < o} . (1)
P

It is clear that V; is an ordinary class of func-
tions of bounded variation, introduced by Jordan.
The class V, was first introduced by N. Wienmer |2].

He [2] showed that the functions of class Vp

could only have simple discontinuities. We note
[3] that

v v 1 £ < < o (2)
P, C % ( P <Py )

ON RATE OF CONVERGENCE OF FOURIER SERIES OF A
FUNCTION OF WIENER'S CLASS

is a strict inclusion. Hence for an  arbitrary
1 <p< ® Wiener's class Vp is strictly larger

than the class Vl.

2. MAIN RESULT

Let f EVP(I < p < @) and let

8

1
S(f) =5a T

I ™

(a cos nx + b sin nx)
n n

n=1

be its Fourier series. Wiener [2] proved the fol-

lowing theorem

THEOREM A. If f €V (l<p < =) then S(f) converges
almost everywhere in [0,27]. '

Recently R. Bojanic [1] gave an estimate of
the rate convergence of Fourier series of functions
of bounded variation in the following form:

THEOREM B. 1f f € Vl , then

S,(x) = 1/2 {£(x+0) + £(x-0)}|< 3

n w/k
g gl(sx(t))

k=1
k

where Vl(gx(t)) is the first total variation of
o

gx(t) f(xt+t) + £(x-t) - £(x+0) - £(x-0) (3)

and Sn(x) is the n-th partial sum of S(f).

The main object of this paper is to obtain the

rate of convergence of Fourier series of f € V
(1 <p < @) which is strictly larger class than the
class V,. To be precise, we prove the following

theorem.

THEOREM 1. 1If f € Vp(l < p < @), then
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E]

” n
[s (0 = 1/2 {£x40) + £E(x-0)}| < éf 5

k=1

o < x

for le < 7 where M is a positive roal number.

3. PROOF

Since we can write

§,(0) - 1/2 {f(x+0) + £(x-0)} =

|

sin nt =
. gx(t:)dt + 0(l) =

(etl)m

-1 s ¥ sin nt
m 7 J' — gx(t)dt + 0(1)
k=0 kar

By change of variable the above expression can be

written into

Ll
=1 n n
= (m Z
k=0 (k"l)'ﬂ
n
Sx(t+2k'rr/n) gx(t + (2k+1) (71/n)
c+2k/n Tt + (Zk+1) (n/n) )Sm nt de+0(1)

-
= n/2]
o (")—l In T

g_(t+2k /n) g (t+(2k+1) (T/n)
(x e ) sin nt + 0(1)

t+2kT/n t+ (2k+1) (m/n)

o A
= (m) R [z $. g ]sinntdt+0(1)
k=1 [s_'n]+l

0

= In(r-_‘) + Jn(s) + 0(1) (4)

p(gx<t))

Now we consider

o (o [en]
I(e) = (7t J g

o

<gx(c+2k:/n)

g (t+(2k+1) (%/n)
i M, < sin nt dt
t+2km/n

(2t (F/n)

T/n

& (n)“[

(8]

gx(t+2k7/n) - gx(t+(2k+1)(‘n’/n) )

] sin nt dt +

t+2k1n/n
"k
{Cn] .
it g, (t+(2k+1) (7/n))
" a . (e+2k /n) (c+2k+1) (T /n) sin nt dt
=1
i L“L(E) N Inz(e) (5)

Applying Holder's inequality on the sum of inte~
grand, we obtain,

-1
I (e} < (n)
nl -
fn [en] b VP
[ I I |g (t+2kn/n)-g (e+(2k+1) (. /n)) |
k=l, ¥ * x
e)

|en| . g \E/e
D \ ) gin ot dt (6
k=1 2k1/n
Ml e
2% Zp (2, (D) (7

because the series of right hand side of (6)conver-
ges for q 1, hence we can find a positive number
M; satisfying the above inequality (7).

And also
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Inz(e) =

n/n £
; [en] 8 (t+(2k+1) (7/n)
= & X — -~ |sin nt dt
"Jo sl (t+2kn/n) (e+(2k+1) (n/n)
1 3en
= sup g (£)} < = Vv (g (£)) ™ (8)
" o<t<den T ef ¥ 2

where H2 is a positive real number. Hence from (7)
and (8), we obtain

M. 3em M2 3em
L(e) < — V (g () +— V g (e)
n = B p X n B *x
o o
M, 3enm
< —=  V_ (g (1) (9
£ P Tx
o
where Hq = Hl + ﬂz. §imilarly we can prove that
| E o Lo d 3
@] < 5 v @)+ Vo (8 (6.
o o
(10)

Collecting the terms of{ 9) and (l0), we obtain

ISn(x) - 1/2  [f(x+0) + £(x-0)}]|

e w

M
.3 5 2 .
A5 BB OD 2 T gl
o} (¢}
I
i k
g & 5

Zp (gx(t))

where M is a positive real number. This completes
the proof of our main theorem.

, (gx(t)) is contiuuous when f(x) is

t
Since V
(%]

continuous, :t follows that

L]
k
\
0o

==
(L e =1

(gx(t)) >0 as n > .

p

k=1

Thus we deduce the following result which is _gene-
ralized version of Theorem A due to Wiener |2] (cf.
Zygmund [&] P-59).

COROLLARY. If f €V,(l<p <) then the Fourier series
of f converges to Y/Z [f(x+0) + f(x—O)J at every
x €[0,2u] . In particular, S(f) converges to f(x)
at every point x of continuity of f of Vo (l<p<=).
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