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ABSTRACT

A few years ago, the author succeeded in extending
the main law of laminar flows to certain more general
forms of hoop cross sections, namely by using
geometrical and analytical considerations of new type.
“The present paper deals with the case of elliptical
sections for which the theory of elliptic integrals
allows of a quite simple integral respresentation and
series expansion for the so-called volume stream.

RESUMEN

Hace unos pocos afios el autor logré extender la ley
principal del flujo laminar a una cierta forma mas
zeneral de secciones transversales circulares, a saber
1sando consideraciones geométricas y analfticas de un
wevo tipo. El presente trabajo trata el caso de
secciones elfpticas para las cuales la teorfa de
integrales elfpticas permite una representacién integral
completamente simple y un desarrollo en serie para el
as{ llamado flujo de volumen.

1. INTRODUCTION

As it is well-known, the Hagen-Polseuille law on
laminar flow of Newtonian fluids (1839-40) which has
become familiar shortly after its finding on varuous
filds of physics, chemistry and biology, recently was
built also into the engineering. (Cf. e.g. (3], [6],
[13]). However its application possibilites are very
limited by the fact that this relation holds, strictly
speaking, only in the case of circuiar or annular cross
sections. In any other case, the classical deduction of
the law (establishing the condition of equilibrium for
the totality of forces acting to an infinitesimal
streamline, and hence conclusion by integration to the
corresponding speed distribution and volume stream,
respectively cf. e.g. [10]) yields merely
approximative results. The situation remains the same if
we start from and "analogy of Greenhill” (1881) and
assume that the velocity v satisfies everywhere in the
flow domain the Poisson equation Av % constant with the
boundary condition v = 0. (See e.g. [2], 179-182; [3],
95-98; [10], 660-663; [11], 62-63.)

ON THE EXTENSION OF THE BASIC LAW OF LAMINAR FLOWS BY

MEANS OF ELLIPTIC INTEGRALS

In the practice, it has been used until recent past
another idea: to try the reduction of flows with more
complicated cross sections to the case of circular ones
on the basis of the so-called hydraulic diameter.
Unfortunately, some investigations in the seventies
showed hat this way may result essential errors when the
occurring pressure drop is calculated. (Cf. [15]). So
since then certain approximate analytic methods have
been preferred again on the research field at issue.
(E.g. [S] and [16].)

In this article, a method of such type which arose
during the mathematical foundation of a new engine
insulation technology (see [12]) is developed further
for the important particular case of elliptic ducts.

II. A SPEED DISTRIBUTION FORMULA

FOR ELLIPTICAL DUCTS

Let us study a cylindrical pipe of length I,
containing so-called Newtonian fluid which flows
stationarily with (scalar ) velocity v. Suppose that the
cross section of the pipe is limited by two concentric
wllipses whose common centre lies on the axis of the
duct and such that the inner ellipse rises from the
outer one by a contraction in the ratio 1: €; denote the
half longer axis of the outer ellipse by «, the half
shorter axis of the same ellipse by b. If we assume
still that the stream lines are parallel with the axis
fo the duct, then Newton’s law yields the shearing
tension T along some "fluid stratum" at a disctance r
from the axis in the form

T=7N 5, (1

where the factor of proportionality n is called "dynamic
viscosity" of the fluid.
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Take on the initial cross section of the pipe a
Cartesian rectangular coordinate system xy such that its
origin O lies on the axis for the duct; let us facten to
the system a third axis z, namely in the direction of
the flow. If the system Xy is supplemented also to a
planar polar system rg with the same origin O, then the
equation of the outer ellipse of the cross section in
the system r¢ will be:

r = ab(a’sin’ P+ bcos’ «p)_v2 s (2)

while the inner ellipse in characterized by

ro= c.ab(azsinzv + bzcoszp)_l/2 3 (3)

with O < € < 1. We remark at the same time: if the duct
of the flow is crossed by a plane through the z-axis,
belonging to a polar angle ¢, then - R denoting the
right-hand expression in (2) - we obtain a rectangle of
breadth (1 - €)R and of length 1. For the sake of
brevity, we want to use in the sequel not only the
notation

R = R(p) = ab/¥ azsinzq; + bzcoszw , (4)
but also we write throughout R! for dR/dy

Now, our setting of objective is to deduce a new
expression for the shearing tension t and hence a
representation for the velocity v, as functions of r and
¢. To that end, we have to start with the stationarity
condition of the flow in case of an arbitrary volume
element inside the steam duct. As usual, we take the
restrictions that the pressure p is constant on each
cross section of the duct, furthermore that it is a
linearly decreasing function of z. Note that the second
specification implies for the difference Ap = p(z + Az)
- p(z) (<0) the formula:

Ap _ "1
T TT ®

where P, P, mean the initial (maximal) and the last

(minimal) pressure value, respectively.

Theorem 1. On the above conditions, the velocity of
the flow in elliptical duct satisfies the following
distribution law:
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where R has the meaning (4), 0 < € <1 and €R <r <R.

Proof. Consider a region ABCD in the piane Xy,
which is bounded by the ellipses r = 0R (¢ < 6 <1), r +
Ar = (6 + AG)R and the straight lines characterized by
the polar angles @, ¢ + Ap. Let fall perpendiculars to
the boundary points of ABCD, and cut the bundle of these
perpendiculars by two planes going through the points
with coordinates z, z + Az of the duct axis, further
being parallel with the plane xy. (Cf. Figures 1.-2.)
The condition of equilibrium for a volume elemnt of the
type just mentioned in the coordinate system xyz may be
written:

Ap. (area of ABCD) = AZ .

[(length of CD). T oo " (length of A_B).‘r”]. 7

He Tty i
re oR 'rw’w) denote the value of the shearing

tension on those parts of the volume element which are
perpendicular to AB and CD,respectively. (Observe that
these tensions are approximately constant whenever the
volume element is "small”; further the concept of
shearing tension implies that it does not effect on the

set of boundary points corresponding to AB and BC.)
The measures occurring in the above formula can be

obtained by well-known propositions of differential
geometry; we have namely

length of AB = 9As, length of CD = (8 + A6)As,
area of ABCD = A9(26 + A6)AI,

where

p+hp
B = l (R(®)1% + [R1(8)]1%d8, ®)
P+hp
1 2
ar=1 I [R(®)1® do. (9

Thus (7) is equivalent to the formual (A6 # 0):

- Ap Al
orﬂl = (0 + AO)-A—Z- o

-1
(a0) "[(0+ AO)t(OOAG)R

(10)
which by (5) for A 5 0, Ap » O, As > O implies

F] -
(et,.) ek PP, d1
a6 1 ds '

i.e. owing to (8)-(9) the differential relation
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(11)

v RZ+R1Z

Integrating with respect to ¢ and writing simply =T

vie get therefore

P, =P
z=_1212_rR_+Mc¢§, (12)
/Rz + RIZ
where for all values of ¢
lim Mc =0 (13)
e-0+ i
holds. But on the basis of (1), (12) takes the form:
v _ P,7P, rR N Mc,q) . Mc,qJ R
ar 2nl n r
v RZ4RI?
or after another integration with respect to r:
P.-P 1212 M
N W RY Sl
v = 4nlr[1+[R]] +1) Rlogr+QC'w.

If we realize still the boundary conditions

=V
r=€RrR

v (15)

=0
r=R '

the dependence of the integration parameters M, Q on €

and ¢ can be specified easily. In fact, the suitable
substitutions in (14) show that
i _ P,-P, & o R_' 24-172 EZ‘Q’
€,9 41 R loge '
P.-P 127 -1/2 2
) B R e -1
a4 ot e 1 (BT [ - o0 2L,
Putting these expressions into (14), the assertion (6)
follows immediatly.
- - L
It is to be streesed that our result becomes in
case of an annulus i.e. for R = Rl = constant, €R = R2 =
constant a well-known exact formula of flow (cf. e.g.
(11], p.63):
Py ] - K log = (16)
= —4;'-1— Rl =P og B »

log(Rl/Rz) 1

where0<R2<r<Rl
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III. GENERALIZATION OF THE HAGEN-POISEUILLE LAW

Let us denote by V the so-called valume steam, i.e.
the valume of the fluid flowing through some cross
section of the duct during the unit of time. According
to as classical formula of vector analysis, we have the
double integral representation:

\.I=IJ‘vdx dy, (17)

(o)

where ¢ is the cross section of the duct and v vix,y)
means the velocity of flow. Applying the polar
transformation x = rcosg, y r sing and using the above
notations, the integral (17) becomes

2n R
I [I v(r,)r dr] de.
o Ler

Consequently, on the basis of (4) and (6) we get:

2n -1/2
s P.-P, 2.2 2
§ &4 4 (1-€9) 4 R!
V = - —
16111[1 c*logc }J.R [1+[R]] dg
o
(18)
The latter integral may also be written in the
form:
n/2
4(ab)* J’o ge (19)
/ 2 2!
Ta'b(w) [T‘.b(W’ +(Uc(<p)l
2 22 ;
where ¢ = (a™- b") denotes the linear excentricity of
the outer boundary ellipse of the cross section af

issue, furthermore

2_. 2 2
Ta,b(w = a'sinp + b cosZ«J, Uc(g)) = czsinwcos P.

We remark that (19) belongs by terms of the theory of
elliptic functions and integrals (cf. e.g. [4] or [14]
and [9], section 21.6) to the class of complete elliptic

integrals of the third kind, because it can be
transformed by the substitution x = tg ¢ into the type
L]
x? + 1
const. J dx. (20)
0 (a2x2+b2) (azx2+bz)2+czx2



In such a way, one has the possibility of estimating
(19) means of certain elementary integrals of rational
functions.

Nevertheless, there Is another, more elegant and

advantageous method for the study of V, namely the use
of the connection of "the integral (19) with

n/2

K(k) = ]' . J

— ¥ (Jk|<), (21
(1-k*sin $)*2

f.e. the so-called complete elliptic integral of the
first kind. We refer primarily to gm facit that for
arbitrary real numbers k, A with k° + A" = 1, the
fransformation formula

R/2

& =ik (@) @

I ) W 1+A
o [1-(1-A)sin“@]v 1-k“sin“y
holds. (See [1), 599-600; [7], 68-69; [8], 39-41.)

Thus applying to (19) the substitution ¢ = % -9
and putting in (22) A = bz/uz. _k2 = (a*-v*) , we
obtain

n/2

Theorem 2. With notations of Theorem 1, the volume sream
of a Newtonian fluld in case of an elliptical duct can
be expressed as a simple elliptic integral, namely

(p.-p.) 2 2
-1 72 _ o8, (-e7) c -
v T |1t loge ] [ a2+b2]
2
- a’ =(p,-P,) 1 -t U (24)
8nl loge =

[0 (75 (8] ()

It is apparent that (24) reduces for a-b-Rl-

constant, c¢=0" (i.e. in case of an annulus), with
notation t:R‘-R2 to a formula known from the literature:

2 2.2
x(p‘—pz) " (Rl - Rz)
V= R -R_ - (R >R).
gnl 1 2 iongllﬁz 1 2
(25)

In particular for Rz-) 0+ (case of a full ctircle), with
notation Rl = p, (25) becomes

x(p. - p)
1 2 4
Vo= P e

which is the classical law of Hagen and Poiseuille. (Cf.
e.g. [10], 662-663 and [11], 63.)

Finally let us notice that the method presented
here for extension of (25)-(26) could be developed
further quite recently by the author also to a wide
class of centrally symmetrical cross sections.
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