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Abstract

In the present paper we give a fractional generalization of the Lauwerier formulation of the boundary
value problem of the temperature field in oil strata. The Caputo fractional derivative operator and the
Laplace transform are the important tools for solving the proposed problem. By using Efros’ theorem
which is a modified form of convolution theorem for Laplace transform, the solution is obtained in an inte-
gral form with integrand expressed as convolution of auxiliary functions of Wright's type

Key words: Caputo’s fractional derivative, Laplace transform, Efros’ theorem, convolution theo-
rem, Wright’s function, auxiliary functions, fractional heat equation.

Una generalizacion fraccional de la formulacion
Lauwerier para los problemas de las temperaturas
en pozos petroleros

Resumen

Este trabajo se trata de una generalizacion fraccional del problema Lauwerier para estudiar las tem-
peraturas en los pozos petroleros. Se utiliza el operador fraccional de Caputoy la transformada de Laplace
para obtener la solucién del problema del contorno. El teorema de Efros, el cual es una generalizacion del
teorema de convolucion, se utiliza para obtener los resultados analiticos en términos de funciones tipo
Wright.

Palabras clave: Derivada fraccional de Caputo, transformada de Laplace, teorema de Efros, teore-
ma de convolucion, funcion de Wright, funciones auxiliares, ecuacion fraccional de
calor.

1. Introduction forced into the strata in the positive and negative

x-direction with constant velocity through an in-

An oil stratum is a porous medium (sand-
stone) which is saturated with oil. During the oil
extraction process the problem arises of describ-
ing the temperature field u = u(x, y, z, t) process
the problem arises, of describing the temperature
field of the strata when a hot fluid or steam is in-
jected into the strata.

Two cases of fluid injection linear and radial
are considered. In the linear case, a hot fluid is

finitely long vertical gallery. In the radial case a
hot fluid is forced through an infinitely thin well
which is considered as a linear source of incom-
pressible fluid with positive volume rate.

The heat equation for a porous medium is
derived in Antimirov et al. [1] and Rubinshtein [2]
under several generally accepted assumptions
on the model.The following three approximate
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formulations of the temperature field problem
are treated:
— The lumped formulation, where the ther-
mal conductivity of the strata is infinitely
large in the vertical direction;

— The incomplete lumped formulation,
where the horizontal heat transfer in the
cap and base rocks surrounding the strata
is neglected;

— The formulation of Lauwerier, where the
horizontal heat transfer in the oil strata is
also neglected.

The result derived in this paper is mainly
based on Lauwerier formulation, initially stud-
ied by H.A. Lauwerier [3] and solved in the lin-
ear case. Lauwerier formulation has been de-
scribed in the book by Antimirov et al. [1]. It re-
lates to the temperature field of a single layer
stratum in the case the velocity of the heat
transfer between the fluid and the skeleton is fi-
nite, thus one has to consider separately the
temperatures u(x,t) and 6(x,z,?) of the fluid and
the cap rock, respectively. The heat equation
for the regions containing the fluid and the
skeleton respectively are derived under the
main assumption that instead of having two re-
gions containing the fluid and the skeleton sep-
arately, there is just a single region which is
taken to be a porous medium.

For a sufficiently large filtration velocity one
can neglect the heat transferred to the cap rock
and stratum in the x-direction in comparison
with the heat transfer in the z-direction.

The Lauwerier formulation for the linear
fluid injection is given as;

0 0’0

E=872, O<X,Z,t< 00, (11]
z
d d

z=o:a—'“t‘=—ya—z—a(u—®), 0<xt<ow (1.2
00 00

x=0:—=u—+k(u-0), 0<xt<ow (1.3)
at 0z

@x=z=0:u=1
Mu® -0 as x’°+2z22>»
©)t=0:u=0 =0. (1.4)

Here the positive constants y, @, u and k are
described a

— The constant y depends on the volume rate
of the hot fluid forced into the strata, the
porosity specified as the ratio of the pores
volume to the whole volume and the coeffi-
cient of thermal conductivity of the cap
rock;

— The constant a depends on the porosity, the
coefficient of thermal conductivity of the
cap rock and the volumic heat capacity of
the fluid;

— The constant u depends on the coefficient of
thermal conductivity of the cap rock and
the volumic heat capacity of the skeleton;

— The constant kcdepends on the porosity and
the volumic heat capacity of the fluid and
the skeleton.

A fractional integro-differential approach for
this problem was proposed earlier by Yortsos and
Gavalas [4] and was also recently implemented in
a different context by Akkutlu and Yortsos [5].
Further, the fractional generalization of the prob-
lem in lumped as well as incomplete lumped for-
mulation have been studied in [6-8].

Recently Boyadjiev, L., Kamenov, O. and
Kalla, S. [9] have studied fractional generaliza-
tion of the above Lauwerier formulation problem.

In the present paper we are concerned with
further extension of the work of Boyadjiev et al. [9]

The aim of this paper is to solve the follow-
ing fractional generalization of the problem given
by (1.1) to (1.4)

ERC) 00
pe =9 ;%9

0z 0z
0,x,2,t<0,1>00<f=<1/2, (1.5)

d
z=0:D>u = —yi—a(u—@],0< x, t< ©,(1.6)

90
z=0:DXQ =u—+Iu=0).0< x.t<x (1.7)

and the conditions

@ x=z=0:u=h(1
Mu® -0 as x’2+2z22>»
©)t=0:u=0 =0, (1.8)
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where we shall use the definition of fractional de-
rivatives by Caputo as given in Podlubny [10]

1 t f””’(r]_ dt, m—1<a<m
D f(t) = M =)o (=)
d" /(0 -
dt™

(1.9

By using Laplace transform of a function (1)
defined as [11]

F(p) = LLfO] = [ e f(t)dt. Re(p) > 0.  (1.10)
0

The rule for fractional derivative of the
Laplace transform reads as [10]

m—1
LIDE (0] = p*LIf (0] = X fHO)p ",

k=0
m-l<a<sm (1.11)
and the inversion formula for Laplace transform
is

-1 f _ L e pes
L [f(P”—me_ime f(p)dp. (1.12)

2. Auxiliary Results

In this section some important results are
given which enable us to obtain the solution of
our proposed problem.

Lemma 1. Efros’ Theorem [6, 12]

Let be given analytic functions G(p) and g(p)
and the relations

F(p) = LIf(0)], e ™PG(p) = Ligl(t, 7)) 2.1)
Then
G(p)F(q(p)) = L[f f@glt, r)dr]. 2.2)
(0]

In the particular case g(p) = p it gives the
well known convolution theorem for the Laplace
transform.

Further, if G(p) =1 then the Theorem as-
sumes the following form if F(p) = L[ f(t)] and
e ™) = L[g(t, )] then

F(q(p)) = L[f f(r)g(t,z)dr]

0

The fundamental solution of the basic
Cauchy problem for the time fractional diffusion
equation (1.5) at 4 =0 can be expressed by an
auxiliary function defined as [9, 13, 14]

11
Mz ) =5~ [ —= e #'dos, 0< f<1  (2.3)
H

where H denotes the Hankel path of integration
that begins at 0 = — —ib,(b, > 0), encircles the
branch cut that lies along the negative real axis
and ends up at ¢ = —w+ ib,(b, > 0). It is also
proved that

M(z; B) = W(—=z; B;1— ),

where
d Zn 1 - do
W ,A., — - o+ zo —
(24, 1) n;n!l“[/ln+ u)  2xiy o"
A>—-Lu>0,

is an entire function of z referred to as the
Wright's function [15, 16] function.

1
In the particular case for § = 2 and § =1it
holds [14]

1 1 2
M(z; 5) = ﬁe_z /* and M(z.,1) = d(z - 1)

respectively, (2.4)

where 0 denotes Dirac delta function.
Now we introduce another auxiliary func-
tion of Wright’s type defined as [9]

1 25 do
N(z; Biv) = W(-z:-2,v) =-—— J e’ ™™ —,
(z: B;v) = W(-2;—28,v) 2m,£e o
1
v>0,0<ﬁs§. (2.5)
. 1
In particular forv =1, 3 =3
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N(z;%;l} = H(t - z), (2.6)

where H denotes the Heaviside step function.

Lemma 2

1
fo<g=< gandO < t, 7,z < o, then we have

the following results for Laplace transform

@) e P = Lig (t.r.z: p)l. 1> O, 2.7)

X
—| =+t

oL
(i) Fe = L[g,(t.7, x, B; )],

A>0,x>0,y >0, (2.8)
2
—(z+1u) 2p L
e VT4 = Lig,(t.r.z: i )] (2.9)
Y Y 3 2
(iv) _e "V T4 = Lig, (L g 2] (2.10)
L
where

(z + ur)p M((z + ur) -ﬂ)

gltrzf) =5 7 2.11)

(x/y)+7

gz(t,r,x;ﬁ;/l)=t“‘N( 2 ;ﬁ;/l), (2.12)

+ 1
galtoriz pi2) = P

1 (z+ ,ur)z 12

fuiQe u e 4M(f Zﬁ)du
0

0<28<1 (2.13)

and

gt B A) =

Proof

Part (i) and (ii) follow from [9, 13].

To prove part (iii) we use Efros’ theorem. Let
us first express

l
&Y 2 p(qtp: ) Gip: B)

2
where q(p; f) = p** + T and G(p; 8) =1

so that

F(q(p; /3)) — e—(2+ﬂr)x/q[p:ﬂ)‘

Now using the well known result [11], we get

F(p) = e"=rmp = |2 H KT _(z'zﬁ)
Hnts
= L[ f(D)](say) (2.15)
-7, p2ﬁ+ﬁ]
since G(p; ﬂ)e—fllﬂp:ﬁ) =e 4 )

Next to find inverse Laplace transform we
use (i) forO < 28 < 1, then it can be deduced that

-7, P2ﬁ+§] _’12’1
e =e * L(gl[t,'cl)), (2.16)
where
T T
g,(t7) = tfﬂjl M(t;ﬁ 2/3) (2.17)

Now applying Efros’ theorem we get the re-
sult (iii) using the functions given in (2.15) and
(2.17).

To prove part (iv) we put

1 —ut ﬁi
"V < Flg(p: PIGIp: B

2

A
o5 L A
L

where
2

A
qlp: p) = p** +7 ¢ Gp) =

The known formula [11] yields
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i
F(p) =ﬁe_“t‘/g =L ﬁe = = L(f(0).

(say). (2.18)
Further

/’LZ

perT]) =

-7,

L—l(e—rlq[p:ﬁ)) =L (e
1 71211

=e * N(t%;ﬁzo)

(using (ii) with A =0 and x = 0)

= g,(t, 7,) (say). (2.19)

Functions deduced in (2.18) and (2.19)
when applied in Lemma 1 give the result (iv).

3. Fractional generalization
of Lauwerier formulation

Theorem

The solution of the problem of the
Lauwerier formulation (1.5), (1.6), (1.7) and (1.8)
is given by

ulx,t) =e TTe [ ) W(tt;B;A), ( a:jxr)dr

(8.1)
and
_axg, _(k_Lﬂ),
O(x,z,t) =ke " [e 27 Q(t, 1,z B A)
0
kx
10(2 ar]df, (3.2)
V4
where

W(t, 7; B: A) = (h(t) + h(0)d(1)* [g,(t. 7, x; B:1 — 2+
g5(t,7,0; B; A) + ,u{gQ(t, 7,x 31 -2p8) +

12
Zg2[t, T, X, ﬂ;l)}=r< g, T B;A) +

A
(k - E’“)gz[t 7, B0 gy (£,7.0; B; V)]
(3.3)

Function h/(t) denotes derivative of the
function h(t).

= (R(t) + h(0)3(t))* g,(t, T, x; Bs1)*
gs(t. 7,z B; A). (3.4)

Qt,7,z; B; A)

Here * denotes the convolution of functions
for Laplace transform.

Proof

Let us apply Laplace transform to (1.5),
(1.6), (1.7) and (1.8). Then with the help of the for-
mula (1.10), we obtain

2@ 00

2'B@(xzp) AT’ 0< x,z< oo, (3.5)
z =0;

_ oul(x, p) _ _

265 x, p) = —y axp —a(@(x, p) - O(x, p),
0< x< (3.6)
z =0;

_ ai(x, ) o _
p*’O(x, p) = qu+ I(@(x, p) — O (x, p),
0< x< oo, (3.7)

(@) x =z =0; ul(0,p)=h(p)

MO -0as x>+ 2% > x, (3.8)

The solution of (3.5) remains bounded as
z » o and is given by

O(x.z.p) = B(x.ple 2", (3.9)

where

12
=—1+2 p2ﬁ+z, (3.10)

where unknown function B(x, p) is determined
by substituting (3.9) into the conditions (3.6) and
(3.7) in the following form

Iu(x, p)

—,uL (3.11)
(pzﬂ +hk+ 71)

B(x, p) =

and
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The solution of the above equation under
the condition (3.8) (a) is given as

_ — akx 1
u(x,p) =h(plexpl ————F~ —

L
v (p2ﬂ+k+%)

26 4
u A (3‘12]
Y
using (3.11) and (3.12) in (3.9) we get
2
k 2
@(X,Z, p) = e—lul,*
2 4+ —1)
(p 2
_ a 1 (p?*f + a)x
h(p)exp| — P - )
(p2/i +lc+ 1) Y
(3.13)

To find the temperature field function u(x, t)
for the fluid injected into the strata we shall apply
Lemma 1 (Efros’ theorem) by representing

t(x, p) = Fla(p: plG(p; B)

L
where q(p; ) = p** + k + % and

1 akx 1
F X =— — 3.14
late: ] a(p: p) eXp[ v dap. ﬁ)] (3-14)
we use the well known result [17]
1 akx 1 alkx
F =— ——|=L|1,2,|—1t|=L[f(1)]
(p) pexP( » p) 027, Lf(0)]
(say) (3.15)

and by Lemma 1 the function f(t) is deduced.
For

L. \—
G(p:b) = (pz” +Ic+ %)h(p) CXP[—x(p” + a)]
Y
it is clear that

e—rq(p:ﬁ)G(p; ﬂ) — exp|:—(6;x + ) — W)]

2 Au |-
P+ p* + T p* + (k - l) h(p)
4 2
- £+r 28 _ - 28 ﬁ
xe(" ]p e VT (3.16)

To find the inverse Laplace transform of
(3.16) we shall simplify its terms in the following
form using the convolution theorem, Lemma 1
and Lemma 2

p’ ﬂH(P)e_[ fﬂ ) v e—m W _

() + h(0)3(1)* [g,(t. 7. x: Bl — 2B)+ g4 (L. 7.0; B: 4)]

(3.17)
2 Y P A e +£
p2ﬂ+%ﬁ(p]ey pe,u p/f4=
LI{n(0) + h(0)o(D}+ {g,(t. 7. x; B:1 —28) +
1’2
PRAGES B} g, (t,7: B )] (3.18)

E(p)e_(gﬂ)p”e’”’v””*% -

L{h(t) + h(0)3(D) }* g,(t, T, x; B;D)* g4 (L, 7, 2; B; A).
(3.19)

We can write (3.16) on taking into account
(8.17), (3.18) and (3.19) as

e—rq(q:ﬁ)G(p; ﬂ) e 7

ax ( A

?]’Lmt, 8.2 (3.20)

function W is defined by (3.3). The application of
Lemma 1 leads directly to the solution (3.1).
Following the same technique we express
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O(x,z p) = Fla(p; pIG,(p: B, (3.21)

where F[q[ D p ]] is defined by (3.14) and
_olexim X | ep B
G(p:p) =khipe ’ Ze’ eV "4

Furthermore

e—rq(p:ﬁ)Gl(p; ﬁ) —

2
Y _(%t)pw ~(zur)| P+
h(p)e e 4,

As a direct consequence of convolution the-
orem and the lemma 2 we arrive at

28,2
L' [eAG (p: )] =ke ' el 2
Wi(t, t; 8 A). (3.22)

Function Q is given by (3.4).

Then the solution (3.2) is obtained with the
help of (3.21), (3.22) and Lemma 1.

4. Special cases

1
Corollary: If we put g = 1n the Theorem

the problem reduces into the following form:

0 %0 00
—=—-A—, 0<xzt<ox 4.1)
at oz 9z

J d
z=0;ﬁ=—yi—a(u—®),0<x,t<oo, (4.2)
00 00
z =0; ;—ﬂf+/c(u 0),0< x,t< ® (4.3)

and the conditions

@x=z=0: u=h(1)
Mu © -0 as x2+2z% > o, 4.4)
@©t=0: u=0 =0.

And the solution is given by

X w

ux,)=e ? [e 2Pt T M| 2, — |dr
0 2 Y

and

ax

Z,u
O(x. z t) =ke "fe( ]Q(tt 7 /1)1( O‘kXT)dz
¥

(4.6)

where

lI‘(t, T, %; /1) = (h(t) + h(0)d(t))*

N

( x )(k ,m)
e +H|t—— -1
y 2
x
M i t_;_r -
e 2 erfc + g +
2 X
2(t—— -1
Y

and

Q(tuzf/l

f(h(t+h0]6(t)* ( x—r)
2 Y

A(z+pr)
Z+ ur
e 2 eyfc — — ﬁ
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o e[t
A(z+;¢t) bt bt 2t 4
+ Ot———t|H[t—— —1| e +
e 2 erfc T -—-1 (4.8) a ( T) ( Y T) mwt
Al : {37 %
u—Ht—= -1 e \ 2/ 4y
) 4 wt
Proof: To calculate the value of ‘I’(t, T, 2 ; l)
r\2 22t
Au X ut -(L) -
1 . (k—)H(t——r}x« e \2t) 4 |1 (4.14)
and Q(t, u,z,i,/lj as given by (3.3) and (3.4) on 2 y 9 /nts
. 1 .
taking = o We shall need the following values Let us simplify the terms as follow
which can be obtained with the help of Lemma 2,
results (2.3) to (2.7) for auxiliary functions M, N ( e )2_ 2t
and properties of Heaviside step function and 6(t—x —T)H(t—x —7)* K —e 2t) 4| 2
Dirac delta function [2] 4 4 2\t
t—f—r
1 Cpl (0 x ur ( x ) x
tr,x—A|= Nt-=—7— —H|t—— -1 oft—— —17—s
92(”‘2 ) {ru)( y s)* PNES y { y
| A
H|t—— -1 —s/|ds e\t 4 gg =
$3/2 e
i-1 2 2( x )
Al t—-=—1
—_—— T Y
(t r T) H(t x ) (4.9) x 1 IE iJ B
= -—— =7 ur y
Ht-=-1|——y
T(4) 4 2z ( ¥ T) (t x )3/2 c
-= -7
Y
gz(t 7, X 1) = H(t— —r), (4.10) (4.15)
Similarly
1 X X
gz(t,r,x;é;o) =6(t——r)H(t——r), 4.11) (/n) 2
v v ,us(t_ _T)H(t_ _r)* i) s
wt
2 2
1 - i _Q 2 9 X
gs(t, r,O;f;l) =M. (25) +, (4.12) ur g (FTT)
2 NE T | —]
u x 1 2 1—7—1
——=H|t—-— -7 7z €
1 N P s T (t_i_r)
g4(t,r;§;l)=ﬁe )4 (4.13) 4
r (4.16)

Then

W(t, T, %; /1) = (h(t) + h(0)d(t))*

X X ut *(i)zfﬁ
ot—=—t|H[t—= —tf| ———e 21/ * |4
( 4 ) ( v ) 0nt?
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Y
X
. Aft———1
el i 4
e 2 erfc - 5 -
X
2 t———1
Y
X
Aut }' t———1
sl T
e 2 erfc Y + ad , 4.17)
2 X
2&__1
14

which is a direct consequence of the result [1,
p-113].
Similarly

IEA

l,u)( X ) ur o
k——|Ht—-=-tp|—7—e 2t/ * =
( 2 14 Wart®

X
e A t—;—r .
e 2 erfc + a +
2 X
2&__,
Y
At———1
= I y
e 2erfc - . (4.18)
X 2
zw__r
Y

After some simplifications we can write

1
‘I‘(t, T, 5; /I) as given in (4.7)

Next,

At u, z: %; 1) = (R(8) + h(0)8(D)+ H(t —% - r)*

4, (4.19)

z+ ut )2 2t

(z+ /n)ef( e

Wnt®

which is expressed by (4.8), after simplification.

If we take A =0 and h(t) = 1in the Theorem
then it reduces to the form studied by Boyedjiev
et al. [9] and the solution is the direct conse-

quence of the main result followed by the facts
given below.

Since, the Dirac delta function J(t) is con-
sidered as a unit element for the convolution
product [12], the expressions (3.3) and (3.4) re-
duce to the form:

Y(t,7; 8;,0) = g,(t. 7, x; B;1 = B) * g,(t,7,0; ;0) +
ugs(t 7, x; f;1-2p) * g, (t,7,0; £;0) +
kg,(t,7.0; B;1) * g,(t, 7.0; $;0).  (4.20)

From Lemma 1 (i) and (ii), for A =0
g5(t,7,0; B: A) = g,(t,7,0; B).

So that we can write

go(t. 7, x; B;1—-2p) * g4(t, 7,0; B;0) =
go(t. 7T, x; f;1—26) * g,(t,7,0; B) 4.21)

and

kg,(t,7,0; B;1) * g4(t, 7.0; B:0) = kg,(t,7,0; B:1) *
g,(t,7,0; B).

Again by (ii) and (iv)

ugy(t 7, x; f:1—-2p)* g,(t,7,0; f;0) =

| X |28
1 ( " )p le—w[p/’)J _
pﬂ

uL™ p1—2ﬁe !
1 _(£+,]p2ﬂ
ML_1 =5 € v e”’””/f =

* 11

p
1 | Xir |p28
pL | —mpe s Ll (e™™) =
p
ugy(tt, x; 1= ) * g,(t,7,0; B). (4.22)

(iii) On taking 4 = 0 and 2§ = 1in the Theo-
rem or taking 4 = Oin the Corollary, we get the so-
lution given in Antimirov et al. [1].

5. Discussion and Conclusions

Temperature field problems in oil strata is
one of the subjects for research among various
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authors.In continuation of the earlier work done
in regard to this subject the present paper is on
the fractional extension of the Lauwerier formu-
lation of the temperature field problem in oil
strata where the definition of Caputo fractional
derivative is used.The study on the subject of
temperature field in oil strata is attended in three
categories namely (i) the lumped formulation (ii)
the incomplete lumped formulation and (iii) the
Lauwerier formulation.In the first two categories
the work is done by Antimirov [6], Ben Nakhi and
S.L. Kalla [7], Boyadjiev and Scherer [8]. Simulta-
neously in the third category work has been done
by A.H. Lauwerier [3] and some similar work is
executed by Y.C. Yortsos and G.R. Gavalas [4]. It
continued when a fractional generalization of the
problem came to be attended by Boyadjiev et al.
[9]. In the present work I intend to introduce one
more term containing the constant 4 in the gov-
erning fractional differential equation and a
function h(t) in the condition and tried to make
the problem more general and advantageous.The
solution as arrived at is expressed in the form of
an integral wherein the integrand is convolution
of some interesting functions of Wright’s type and
the method of solution is mainly based on
Laplace transform. The paper interalia contains
in it as a corollary the solution of another new
problem of Lauwerier formulation obtained on

1
taking g = By in the main B.V.P. In aforesaid solu-

tion when we have used 4 = 0 and h(t) =1we ar-
rive at the problem discussed in Antimirov et al.
[1]. Additionally on using the above substitutions
in the main theorem we obtain the same results
given in Boyadjiev et al. [9].

Inclusion of some numerical interpreta-
tions and figures is under consideration and
shall form part of next communication.
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