Rate of phagocytosis of Acanthamoeba species from groundwater. Part I.

Tasa de fagocitosis en las especies de Acanthamoeba provenientes de aguas subterráneas. Parte I.

  • Silvana B. Pertuz Belloso Fundación B Chemokines Molecules and Therapies. Pachuca de Soto. Estado de Hidalgo
  • Deyamira Matuz Mares Universidad Nacional Autónoma de México
  • Emelia Campoy Universidad Nacional Autónoma de México
  • Miroslav Macek Universidad Nacional Autónoma de México
  • Elizabeth Ramírez Flores Universidad Nacional Autónoma de México
Keywords: Acanthamoeba culbertsoni, Acanthamoeba castellanii, Mezquital Valley, groundwaters, phagocytosis, phagosomes

Abstract

The Acanthamoeba species belonging to subclass of Gymnamoebia, a class of free living amoeba. Acanthamoeba species are cosmopolitan with distribution in the world. The phagocytosis is a biological mechanism more studied, especially in the pathogenic Acanthamoeba species. Many molecular mechanisms turn on the phagocytosis, between them carbohydrates recognition on the bacterial surface, and the activation of cellular mechanisms, as the phagosome formation and the fusion with the lysosomes for digestion. In the environment this function has been not studied, and here we have idea that this process is important in regulation of bacteria and others protozoa. The objective of work is the characterization of the phagocytosis of Acanthamoeba species isolated from Mezquital Valley groundwater (State of Hidalgo, Mexico). The phagocytosis was analyzed on non-nutritive agar Petri Plates with fluorescent label bacteria inoculate with Acanthamoeba and incubated by 30°C, 1 h, 1 ½ h, and then they were recovered to stained using to protocol of Sherr et al. (1993), modified. The phagocytosis of Acanthamoeba was higher to ½ hour of the interaction with fluorescent label bacteria (FLB), and reduced to 1 hour. The cellular process of phagocytosis showed in the work, started with thespecial pseudopods to trapped bacteria in floccules, forming phagosomes that regulated by time of the digestion.

Downloads

Download data is not yet available.

References

ALIBAUD, L., J. PAWELCZYK, L. GANNOUN ZAKI, V. K. SINGH, Y. ROMBOUTS, M. DRANCOURT, J. DZIADEK, Y. GUÉRARDEL y L. KREMER. 2014. Increased phagocytosis of Mycobacterium marinum mmutants defective in lipooligosaccharide production: a structure-activity relationship study. Biol Chem. 289: 215-228.

ALLEN, P. G. y E. A. DAWIDOWICZ. 1990. Phagocytosis in Acanthamoeba: I. A mannose receptor is responsible for the binding and phagocytosis of yeast. J Cell Physiol. 145: 508- 513.

ANDERSEN, R. O. 2018. A Half century of Research on Free-living Amoebae (1965– 2017): Review of Biogeographic, Ecological and Physiological Studies. Acta Protozool. 57: 1–28.

ATIF-NISAR, M., K. E. ROSS, M. H BROWN, R. BENTHAM y H. WHILEY. 2020. Legionella pneumophila and Protozoan Hosts: Implications for the Control of Hospital and Potable Water Systems. Pathogens. 9: 286.

AVERY, S. V., J. L. HARWOOD y D. LLOYD. 1995. Quantification and Characterization of Phagocytosis in the Soil Amoeba Acanthamoeba castellanii by Flow Cytometry. Appl. Environ. Microbiol. 61: 1124-1132.

BERÓN W, C. ÁLVAREZ DOMÍNGUEZ, L. MAYORGA y P. D. STAH. 1995. Membrane trafficking along the phagocytic pathway. Trends Cell. Biol. 5: 100-104.

BOTTONE, E. J., R. M. MADAYAG y M. N. QURESHI. 1992. Acanthamoeba keratitis: synergy between amebic and bacterial co-contaminants in contact lens care systems as a prelude to infection. J. Clin. Microbiol. 30: 2447-50.

BOZUE, J. A. y W. JOHNSON. 1996. Interaction of Legionella pneumophila with Acanthamoeba castellanii: Uptake by Coiling Phagocytosis and Inhibition of Phagosome Lysosome Fusion. Infection and Immunity. 64: 668–673.

CASTRILLÓN, J. C. y L. P. OROZCO. 2013. Acanthamoeba spp. as opportunistic pathogens parasites. Rev. Chilena Infectol. 30:147-55.

DE JONCKHEERE, J. F. 1980. Growth Characteristics, Cytopathic Effect in Cell Culture, and Virulence in Mice of 36 Type Strains Belonging to 19 Different Acanthamoeba spp. Applied and Environmental Microbiology. 39: 681-685.

DEY, R., A. M. RIEGER, C. STEPHENS y N. J. ASHBOLT. 2019. Interactions of Pseudomonas aeruginosa with Acanthamoeba polyphaga Observed by Imaging Flow Cytometry. Cytometry. 95A: 555–564.

GALLEGOS-NEYRA, E. M., A. LUGO VÁZQUEZ, A. CALDERÓN VEGA, M. R. SÁNCHEZ RODRÍGUEZ y R. MAYÉN ESTRADA. 2014. Biodiversidad de protistas amébidos de vida libre en México. Revista Mexicana de Biodiversidad, Supl. 85: S10-S25.

GUIMARAES, A. J., K. XAVIER GOMES, J. REIS CORTINES, J. M. PERALTA Y R. H. SARA MAGO PERALTA. 2016. Acanthamoeba spp. as a universal host for pathogenic microorganisms: One bridge from environment to host virulence. Microbiol. Res. 193: 30-38.

HALLETT, M. B. 2020. An Introduction to Phagocytosis. Adv Exp Med Biol. 1246: 1-7.

HARTENSTEIN, V. y P. MARTÍNEZ. 2019. Phagocytosis in cellular defense and nutrition: a food-centered approach to the evolution of macrophages. Cell Tissue Res. 377: 527-547.

LAMBRECHT, E., J. BARÉ, I. VAN DAMME, W. BERT, K. SABBE Y K. HOUF. 2013. Behavior of Yersinia enterocololitica in the presence of the bacteriovorous Acanthamoeba castellanii. Applied and Enviromental Microbiology. 79: 6407-6413.

LOIKE, J. D. y S. C. SILVERSTEIN. 1983. A fluorescence quenching technique using trypan blue to differentiate between attached and ingested glutaraldehyde-fixed red blood cells in phagocytosing murine macrophages. J. Immunol. Methods. 57: 373-379.

MATUZ, M. D. 2001. Amebas de vida libre aisladas de aguas subterráneas del valle de mezquital, Hidalgo, México. Tesis de Grado, Escuela de Estudios Superiores (FES) de Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México. 53pp.

MIYAZAKI, D., H. EGUCHI, T. KUWAHARA, H. NAKAYAMA IMAOHJI, M. INABA, M. ITOI, K. UEDA, Y. OHASI, K. SADO, S. MIZUTAHI, S. SASAKI, Y. SHIMIZU y Y. INOUE. 2020. Presence of Acanthamoeba and diversified bacterial flora in poorly maintained contact lens cases. Scientific Reports: Nature Research. 10: 12595.

PALING S., R. WAHYUNI, N. MATUZAHROH, D. WINARNI, ISWAHYUDI, L. ASTARI, D. ADRIATY, I. AGUSNI y S. IZUMI. 2018. Acanthamoeba sp. S-11 phagocytotic activity on Micobacterium leprae in different nutrient conditions. Afr. J. Infect. Dis. 12(S): 44-48.

PICKUP, Z. L., R. PICKUP y J. D. Parry. 2007. Effects of Bacterial prey species and their concentration on growth of the Acanthamoeba castellanii and Harmannella vermiformis. Applied and Environmental Microbiology. 73: 2631-2634.

ROGERSON, A., F. HANNAH Y G. GOTHE. 1996. The grazing potential of some unusual marine benthic amoebae feeding on bacteria. European Journal of Protistology. 32: 271-279.

PERTUZ S. B. y N. C. JIMÉNEZ. 2015. Amebas de vida libre potencialmente patógenas en la bahía de Maracaibo. Bol. Centro Invest. Biol. 50: 100- 118.

SEEGER E. M., M. THUMA, E. FERNÁNDEZ MOREIRA, E. JACOBS, M. SCHMITZ, Y J. H. HELBIG. 2010. Lipopolysaccharide of Legionella pneumophila shed in a liquid culture as a nonvesicular fraction arrests phagosome maturation in amoeba and monocytic host cells. FEMS Microbiol. Lett. 307: 113-119.

SHERR, B. F., E. B. SHERRY R. D. FALLON. 1987. Use of Monodispersed, Fluorescently Labeled Bacteria to Estimate In Situ Protozoan Bacterivory. Applied and Environmental Microbiology. 53: 958-965.

SIDDIQUI R. y N. A. KHAN. 2012. Biology and pathogenesis of Acanthamoeba. Parasit, Vectors. 10: 5:6.

TINDALL, B. J., G. SUTTON y G. M. GARRITY. 2017. Enterobactera erogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) share the same nomenclatural type (ATCC 13048) on the Approved Lists and are homotypic synonyms, with consequences for the name Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980). I. J. of Syst and Evol. Microbiol. 67: 502-504.

VALSTER, R. M., B. A. WULLINGS, R. VAN DEN BERG Y D. VAN DER KOOIJ. 2011. Relationships between Free-Living Protozoa, cultivable Legionella spp., and water quality characteristics in three drinking water supplies in the Caribbean. Appl. Environ. Microbiol. 77: 7321-7328.

WEEKERS, P. H. H., P. L. E. BODELIER, J. P. H. WIJEN y G. D. VOGELS. 1983. Effects of Grazing by the Free-Living Soil Amoebae Acanthamoeba castellanii, Acanthamoeba polyphaga, and Hartmannella vermiformis on Various Bacteria. Applied and Environmental Microbiology. 59: 2317-2319.

Published
2021-06-24
How to Cite
Pertuz Belloso, S. B., Matuz Mares, D., Campoy, E., Macek, M., & Ramírez Flores, E. (2021). Rate of phagocytosis of Acanthamoeba species from groundwater. Part I.: Tasa de fagocitosis en las especies de Acanthamoeba provenientes de aguas subterráneas. Parte I. Boletín Del Centro De Investigaciones Biológicas, 55(1), 1-28. https://doi.org/10.5281/zenodo.5027538