Follicular population, quantity and quality of cumulus-oocyte complexes of cows grazing in three seasons of the year in the Mexican tropics

  • Bulmaro Méndez-Argüello Universidad Autónoma de Chiapas, Facultad Maya de Estudios Agropecuarios, Catazajá, Chiapas, México.
  • Israel Martínez-Cruz Universidad Autónoma de Chiapas, Facultad Maya de Estudios Agropecuarios, Catazajá, Chiapas, México.
  • Cristoforo Mateo Gusmán-Arcos Colegio de postgraduados, Campus Campeche, Champotón, Campeche, México.
  • Froylan Rosales-Martínez Colegio de postgraduados, Campus Campeche, Champotón, Campeche, México.
  • Rubén Monroy Hernández Universidad Autónoma de Chiapas, Facultad Maya de Estudios Agropecuarios, Catazajá, Chiapas, México.
  • Jesús Benjamín Ponce-Noguez Universidad Autónoma de Chiapas, Facultad Maya de Estudios Agropecuarios, Catazajá, Chiapas, México.
  • Juan Carlos Torres-Ramírez Universidad Autónoma de Chiapas, Facultad Maya de Estudios Agropecuarios, Catazajá, Chiapas, México.
Keywords: Climate change, tropical climate, heat stress, fertility, reproduction

Abstract

The high temperatures and relative humidity of recent years have cause heat stress in cattle, which mainly affects animals in grazing systems. The objective of this research was to determine the follicular population, quantity and quality of cumulus-oocyte complexes in grazing cows during three seasons of the year in the northern regions of Chiapas, Mexico. The study was conducted in three climatic seasons: fresh- humid, hot-dry, and hot-humid. A total of 416 ovaries were used (FH=225, HD=100, and HH=91), from crossbred cows (Bos taurus x Bos indicus) from grazing systems. The number of corpus luteum, follicular population, and the quantity and quality of cumulus-oocyte complexes, which were also classified as viable and non- viable, were analyzed. The study variables were analyzed using the generalized linear models. No statistical difference was observed, by ovary, for corpora lutea (P ≥ 0.05); with means of 0.35 ± 0.04 (27.3%), 0.46 ± 0.06 (35.9%), and 0.47 ± 0.07 (36.8%) for the fresh-humid, hot-dry, and hot-humid seasons. The season significantly affected medium follicles (P ≤ 0.003), small follicles (P ≤ 0.001), and total follicles (P ≤ 0.001), but not large follicles (P ≥ 0.05). A season effect was observed for all COCs variables (P ≥ 0.05), as well as for the cumulus-oocyte complexes viable and non-viable (P ≤  0.002).  According  to the observed results, the highest fertility of crossbred bovine females occurs during the fresh-humid  season,  which  can be used to schedule breeding and implement reproductive biotechnologies.

Downloads

Download data is not yet available.

References

Figueroa D, Galicia L, Suárez-Lastra, M. Latin American cattle ranching sustainability debate: An approach to social-ecological systems and spatial-temporal scales. Sustainability [Internet]. 2022; 14(14):8924. doi: https://doi.org/gv5jsx DOI: https://doi.org/10.3390/su14148924

Rosales-Martínez F, Rosendo-Ponce A, Cortez-Romero C, Gallegos-Sánchez J, Cuca-García JM, Becerril-Pérez CM. Relation of the maximum temperature and relative humidity close to the insemination with the tropical milking criollo heifer´s gestation in three seasons. Trop. Anim. Health Prod. [Internet]. 2021; 53(1):27. doi: https://doi.org/p42n DOI: https://doi.org/10.1007/s11250-020-02430-3

Byrme MP, Pendergrass AG, Rapp AD, Wodzicki KR. Response of the intertropical convergence zone to climate change:location, width, and strength. Curr. Clim. Change Rep. [Internet]; 2018; 4:355-370. doi: https://doi.org/gj74kd DOI: https://doi.org/10.1007/s40641-018-0110-5

Lyra A, Imbach P, Rodríguez D, Chan CS, Georgiou S, Garofolo L. Projections of climate change impacts on central America tropical rainforest. Clim. Change. [Internet]. 2017; 141:93-105. doi: https://doi.org/f9xtwd DOI: https://doi.org/10.1007/s10584-016-1790-2

Silva WC, Silva JAR, Camargo-Junior RNC, Silva EBR, Santos MRP, Viana RB, Silva AGM, Silva CMG, Lourenço-Júnior JB. Animal welfare and effects of per-females stress on male and cattle reproduction – A review. Front. Vet. Sci. [Internet]. 2023; 10:1083469. doi: https://doi.org/p42p DOI: https://doi.org/10.3389/fvets.2023.1083469

Chavez MI, García JE, Vélis FG, Gaytán LR, de Santiago A, Mellado M. Effects of in utero heat stress on subsequent reproduction performance of first-calf Holstein heifers. Span. J. Agric. Res. [Internet]. 2020; 18(2):e0404. doi: https://doi.org/p42q DOI: https://doi.org/10.5424/sjar/2020182-15721

Tian H, Liu J, Chen X, Li S, Li X, Mengal K, Lu Y, Wang D. Effects of ambient temperature and humidity on body temperature and activity of heifers, and a novel idea of heat stress monitoring. Anim. Prod. Sci. [Internet]. 2021; 61(15):1584-1591. doi: https://doi.org/p42r DOI: https://doi.org/10.1071/AN20156

Togoe D, Minca NA. The impact of heat stress on the physiological, productive and reproductive status of dairy cows. Agriculture. [Internet]. 2024; 14(8):1241. doi: https://doi.org/p42s DOI: https://doi.org/10.3390/agriculture14081241

Wachida N, Dawuda PM, Ate IU, Rekwot PI. Impact of environmental heat stress on ovarian function of zebu cows. J. Anim. Health Prod. [Internet]. 2022; 10(4):412-419. doi: https://doi.org/p42t DOI: https://doi.org/10.17582/journal.jahp/2022/10.4.412.419

Hunter RHF, López-Gatius F. Temperature gradients in the mammalian ovary and genital tract: A clinical perspective. Eur. J. Obstet. Gynecol. Reprod. Biol. [Internet]. 2020; 252:382-386. doi: https://doi.org/p42v DOI: https://doi.org/10.1016/j.ejogrb.2020.07.022

Peralta-Torres JA, Aké-López JR, Centurión-Castro FG, Segura-Correa JC. Effect of season and breed group on the follicular population and cyclicity of heifers under tropical conditions. Trop. Anim. Health Prod. [Internet]. 2017; 49(1):207-211. doi: https://doi.org/f9k9nd DOI: https://doi.org/10.1007/s11250-016-1182-7

Campen KA, Abbott CR, Rispoli LA, Payton RR, Saxton AM, Edwards JL. Heat stress impairs gap junction communication and cumulus function of bovine oocytes. J. Reprod. Dev. [Internet]. 2018; 64(5): 385-392. doi: https://doi.org/gdxtmm DOI: https://doi.org/10.1262/jrd.2018-029

Robert C. Nurturing the egg: the essential connection between cumulus cells and the oocyte. Reprod. Fertil. Dev. [Internet]; 2021; 34(2): 149-159. doi: https://doi.org/p42z DOI: https://doi.org/10.1071/RD21282

Báez F, Camargo A, Reyes AL, Márquez A, Paula-Lopes F, Viñoles C. Time-dependent effecs of heat shock on the zona pellucida ultrastructure and in vitro developmental competence of bovine oocytes. Reprod. Biol. [Internet]. 2019; 19(2):195-203. doi : https://doi.org/p422 DOI: https://doi.org/10.1016/j.repbio.2019.06.002

Rosales-Martínez F, Becerril-Pérez CM, Rosendo-Ponce A, Cortez-Romero C, Torres-Hernández G, Gallegos-Sánchez J. Effects of season, maximum temperature and relative humidity on the gestation success of Tropical milking criollo cows. Agrociencia, [Internet]. 2023; 57(5):860-881. doi: https://doi.org/p423 DOI: https://doi.org/10.47163/agrociencia.v57i5.2802

García E. Modificaciones al Sistema de clasificación climática de Köppen. [Internet]. 5th ed. Ciudad de México: Universidad Nacional Autónoma de México, Instituto de Geografía. 2004 [Accessed 15 Jan. 2025]. Available in: https://goo.su/b6b7mc

Aguila L, Treulen F, Therrien J, Felmer R, Valdivia M, Smith CL. Oocyte selection for in vitro embryo production in bovine species: noninvasive approaches for new challenges of oocyte competence. Animals. [Internet]. 2020; 10(12):2196. doi: https://doi.org/p424 DOI: https://doi.org/10.3390/ani10122196

Penitente-Filho JM, Jimenez CR, Zolini AM, Carrascal E, Azevedo JL, Silveira CO, Oliveira FA, Torres CAA. Influence of corpus luteum and ovarian volume on the number and quality of bovine oocytes. Anim. Sci. J. [Internet]. 2015; 86(2):148-152. doi: https://doi.org/f6zbsg DOI: https://doi.org/10.1111/asj.12261

Statistical Analysis System (SAS). User’s Guide: Statistics. Version 9.4 for Windows. Cary, NC: SAS Institute Inc.2010.

Guo J, Hu S, Guan Y. Regime shifts of the wet and dry seasons in the tropics under global warming. Environ. Res. Lett. [Internet]. 2022; 17:104028. doi: https://doi.org/gwfg4g DOI: https://doi.org/10.1088/1748-9326/ac9328

Kayacik V, Salmanoglu MR, Polat B. and Özlüer A. Evaluation of the corpus luteum size throughout the cycle by ultrasonography and progesterone assay in cows. Turk. J. Vet. Anim. Sci. [Internet]. 2005 [cited 22 April 2025]; 29(6):1311-1316. Available in: https://goo.su/8xNUNnB

Vercouteren MMAA, Bittar JHJ, Pinedo PJ, Risco CA, Santos JEP, Vieira-Neto A, Galvao KN. Factors associated with early cyclicity in pospartum dairy cows. J. Dairy Sci. [Internet]. 2015; 98(1):229-239. doi: https://doi.org/f6sxwq DOI: https://doi.org/10.3168/jds.2014-8460

Verma P, Kumar AJ, Mishra A, Jesse DD, Mandal S, Gattani A, Patel P, Singh P, Jatav M. Role of inhibin hormone: An update. Pharm. Innov. J. [Internet]. 2023 [cited 18 april 2025]; 12(19):1162-1167. Available in: https://goo.su/AUupK

López-Gatius F, Llobera-Balcells M, Palacín-Chauri RJ, García-Ispierto I, Hunter RHF. Follicular size threshold for ovulation reassessed. Insights from multiple ovulating dairy cows. Animals. [Internet]. 2022; 12(9)1140. doi: https://doi.org/p427 DOI: https://doi.org/10.3390/ani12091140

Schüller LK, Michaelis I, Heuwieser W. Impact of heat stress on estrus expression and follicle size in estrus under field conditions in dairy cows. Theriogenology, [Internet]. 2017; 102:48-53. doi: https://doi.org/gbzw22 DOI: https://doi.org/10.1016/j.theriogenology.2017.07.004

Peralta-Torres JA, Aké-López JR, Segura-Correa JC, Aké- Villanueva JR. Effect of season on follicular population, quality and nuclear maturation of bovine oocytes under tropical conditions. Anim. Reprod. Sci. [Internet]. 2017; 187:47-53. doi: https://doi.org/gcrkdg DOI: https://doi.org/10.1016/j.anireprosci.2017.10.004

Mietkiewska K, Kordowitzki P, Pareek CS. Effects of heat stress on bovine oocytes and early embryonic development: An update. Cells. [Internet]. 2022; 11(24):4073. doi: https://doi.org/p428 DOI: https://doi.org/10.3390/cells11244073

Ferreira RM, Ayres H, Chiaratti MR, Ferraz ML, Araújo AB, Rodrigues CA, Watanabe YF, Vireque AA, Joaquim DC, Smith LC, Meirelles FV, Baruselli PS. The low fertility of repeated-breeder cows during summer heat stress is related to a low oocyte competence to develop into blastocysts. J. Dairy Sci. [Internet]. 2011; 94(5):2383- 2392. doi: https://doi.org/fppbc8 DOI: https://doi.org/10.3168/jds.2010-3904

Ahmed JA, Nashiruddullah N, Dutta D, Biswas RK, Borah P. Cumulus cell expansion and ultrastructural changes in matured bovine oocytes under heat stress. Iran J. Vet. Res. [Internet]. 2017 [cited 23 Feb. 2025]; 18(3):203-207. Available in: https://goo.su/Co6XDC

Carvalheira LR, Wenceslau RR, Ribeiro LDS, de Carvalho BC, Borges AM, Camargo LSA. Daily vaginal temperature in girolando cows from three different genetic composition under natural heat stress. Trans. Anim. Sci. [Internet]; 2021; 5(4):txab206. doi: https://doi.org/p429 DOI: https://doi.org/10.1093/tas/txab206

Roth Z. Effect of heat stress on ovarian functions and embryonic development: mechanism and potential strategies to alleviate these effects in dairy cows. Biosci. Proc. [Internet]. In: J.L. Juengel, A. Miyamoto, L.P. Reynolds, M.F. Smith, R. Webb (Eds.), Reproduction in Domestic Ruminants VIII. Packington, Leicestershire, UK: Context Publishing; 2014; pp. 193-208. Available in: https://goo.su/0Z7mXo

Published
2025-09-10
How to Cite
1.
Méndez-Argüello B, Martínez-Cruz I, Gusmán-Arcos CM, Rosales-Martínez F, Monroy Hernández R, Ponce-Noguez JB, Torres-Ramírez JC. Follicular population, quantity and quality of cumulus-oocyte complexes of cows grazing in three seasons of the year in the Mexican tropics. Rev. Cient. FCV-LUZ [Internet]. 2025Sep.10 [cited 2025Sep.25];35(3):5. Available from: http://www.produccioncientifica.luz.edu.ve/index.php/cientifica/article/view/44412
Section
Animal Production