Effects of exogenous fibrolytic enzymes supplementation on growth performance and ruminal fermentation in pre-weaning Simmental calves
Abstract
Early adaptation of newborn calves’ forestomaches to concentrates and roughage is crucial for cost-effectiveness. Therefore, the use of additives that will facilitate early adaptation to feed and positively impact forestomach development is crucial. This study aimed to determine the effects of exogenous fibrolytic enzyme supplementation on growth performance and rumen fermentation in pre-weaning calves. Eighteen Simmental male calves of the same age (4 days) were randomly assigned to 3 groups and supplemented with exogenous fibrolytic enzyme additive, 0 (Control), 2 g.d- 1, or 4 g,d-1 for 84 days treatments included with exogenous fibrolytic enzyme additive, 0 (Control), 2 g.d-1 or 4 g.d-1. The exogenous fibrolytic enzyme supplementation to calves significantly improved feed conversion ratio (P<0.01). Ruminal pH and ammonia nitrogen (NH₃-N concentrations were not affected by exogenous fibrolytic enzyme supplementation on days 42 and 84 of the study (P>0.05). Ruminal concentrations of acetic acid, propionic acid, and butyric acid were not affected by exogenous fibrolytic enzyme supplementation on day 42 of the study (P>0.05). The propionic acid concentration was higher in both exogenous fibrolytic enzyme -supplemented groups than in the Control group on the 84th day of the study (P<0.01). The butyric acid concentration at 2 g.d-1 exogenous fibrolytic enzyme supplemented group was higher than the other groups on the 84th day of the study (P<0.001). The acetic acid to propionic acid ratio was higher in the Control and 2 g.d-1 exogenous fibrolytic enzyme -supplemented groups than in the 4 g.d-1 exogenous fibrolytic enzyme-supplemented group on the 42nd day of the study (P<0.05). The acetic acid to propionic acid ratio was higher in the Control group than in the exogenous fibrolytic enzyme -supplemented groups on day 84 of the study (P<0.01). The results indicated that 2 or 4 g.d-1 exogenous fibrolytic enzyme supplementation had a better feed conversion ratio and ruminal propionic concentration in pre-weaning calves.
Downloads
References
Diao Q, Zhang R, Fu T. Review of Strategies to Promote Rumen Development in Calves. Animals. [Internet]. 2019; 9(8):490. doi: https://doi.org/p5ks DOI: https://doi.org/10.3390/ani9080490
Dias J, Marcondes MI, Noronha MF, Resende RT, Machado FS, Mantovani HC, Dill-McFarland KA, Suen G. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves. Front Microbiol. [Internet]. 2017; 8:1553. doi: https://doi.org/p5kt DOI: https://doi.org/10.3389/fmicb.2017.01553
Chen D, Zhong G, Su HEW, Rahman MA, Chen K, Tang J, Li F. Physiological Variation in Ruminal Microbiota under Altered Energy Levels in Starter Ration of Suckling Angus Calves. Pak. Vet. J. [Internet]. 2021 [15 May 2025]; 41(3):409-413. Available in: https://goo.su/7H38HP
Jiang X, Liu X, Liu S, Li Y, Zhao HB, Zhang YG. Growth, rumen fermentation and plasma metabolites of Holstein male calves fed fermented corn gluten meal during the postweaning stage. Anim. Feed Sci. Technol. [Internet]. 2019; 249:1-9. doi: https://doi.org/mkgc DOI: https://doi.org/10.1016/j.anifeedsci.2019.01.012
Khademi AR, Hashemzadeh F, Khorvash M, Mahdavi AH, Pazoki A, Ghaffari MH. Use of exogenous fibrolytic enzymes and probiotic in finely ground starters to improve calf performance. Sci. Rep. [Internet]. 2022; 12(1):11942. doi: https://doi.org/p5kx DOI: https://doi.org/10.1038/s41598-022-16070-0
Öztürk H, Gur G. Rumen physiology: microorganisms, fermentation and manipulation. Ankara Univ. Vet. Fak. Derg. [Internet]. 2021; 68(4):423-434. doi: https://doi.org/p5kz DOI: https://doi.org/10.33988/auvfd.960447
National Research Council (NRC). Nutrient requirements of dairy cattle: 2001. Eighth Revised Edition. Washington, DC: National Academies Press; 2021.
Van Soest PJ. Nutritional ecology of the ruminant. 2nd ed. Ithaca, NY: Soest PJV; 1994. DOI: https://doi.org/10.7591/9781501732355
Ma L, Wang L, Zhang Z, Xiao D. Research progress of biological feed in beef cattle. Animals. [Internet]. 2023; 13(16):2662. doi: https://doi.org/p5k2 DOI: https://doi.org/10.3390/ani13162662
Shi H, Guo P, Zhou J, Wang Z, He M, Shi L, Huang X, Guo P, Guo Z, Zhang Y, Hou F. Exogenous fibrolytic enzymes promoted energy and nitrogen utilization and decreased CH4 emission per unit dry matter intake of tan sheep grazed a typical steppe by enhancing nutrient digestibility on China loess plateau. J. Anim. Sci. [Internet]. 2023; 101:skad112. doi: https://doi.org/p5k3 DOI: https://doi.org/10.1093/jas/skad112
Diler A, Aydın R. Rasyona Probiyotik – Enzim Kombinasyonu İlavesinin İsviçre Esmeri Irkı Buzağılarda Büyüme Performansı ve Yemden Yararlanma ve Sağlık Üzerine Etkileri. Hayv. Üret. 2009 [15 May 2025]; 50(2):22-28. Available in: https://goo.su/o5iC
Ghorbani G. Jafari A. Samie A, Nikkhah A. Effects of Applying Exogenous, Non-Starch Polysaccharidases to Pre-Weaning Starter Concentrate on Performance of Holstein Calves. Int. J. Dairy Sci.; 2007; 2(1):79-84. doi: https://doi.org/fnjgrj DOI: https://doi.org/10.3923/ijds.2007.79.84
Liu YR, Wang C, Liu Q, Guo G, Huo WJ, Zhang YL, Pei CX, Zhang SL. Effects of branched-chain volatile fatty acids and fibrolytic enzyme on rumen development in pre- and post-weaned Holstein dairy calves. Anim. Biotechnol. [Internet]. 2020; 31(6):512-519. doi: https://doi.org/p5k6 DOI: https://doi.org/10.1080/10495398.2019.1633340
Wang C, Liu Q, Guo G, Huo WJ, Wang YX, Zhang YL, Pei CX, Zhang SL. Effects of fibrolytic enzymes and isobutyrate on ruminal fermentation, microbial enzyme activity and cellulolytic bacteria in pre-and post-weaning dairy calves. Anim. Prod. Sci. [Internet]. 2018; 59(3):471-478. doi: https://doi.org/p5k7 DOI: https://doi.org/10.1071/AN17270
He ZX, Walker ND, McAllister TA, Yang WZ. Effect of wheat dried distillers grains with solubles and fibrolytic enzymes on ruminal fermentation, digestibility, growth performance, and feeding behavior of beef cattle. J. Anim. Sci. [Internet]. 2015; 93(3):1218-1228. doi: https://doi.org/p5k8 DOI: https://doi.org/10.2527/jas.2014-8412
Rode LM, Yang WZ, Beauchemin KA. Fibrolytic enzyme supplements for dairy cows in early lactation. J. Dairy Sci. [Internet]. 1999; 82(10):2121-2126. doi: https://doi.org/cstwsg DOI: https://doi.org/10.3168/jds.S0022-0302(99)75455-X
Colombatto D, Mould FL, Bhatt MK, Morgavi DP, Beauchemin KA, Owen E. Influence of fibrolytic enzymes on the hydrolysis and fermentation of pure cellulose and xylan by mixed ruminal microorganisms in vitro. J. Anim. Sci. [Internet]. 2003; 81(4):1040-1050. doi: https://doi.org/p5mf DOI: https://doi.org/10.2527/2003.8141040x
Pech-Cervantes AA, Muhammad I, Ogunade IM, Jiang Y, Kim DH, Gonzalez CF, Hackmann TJ,Oliveira AS, Vyas D, Adesogan AT. Exogenous fibrolytic enzymes and recombinant bacterial expansins synergistically improve hydrolysis and in vitro digestibility of bermudagrass haylage. J. Dairy Sci. [Internet]. 2019; 102(9):8059-8073. doi: https://doi.org/p5mg DOI: https://doi.org/10.3168/jds.2019-16339
Aydin R. Yanar M, Kocyigit R, Diler A, Ozkilicci TZ. Effect of direct-fed microbials plus enzyme supplementation on the fattening performance of Holstein young bulls at two different initial body weights. Afr. J. Agric. Res. 2009 [15 May 2025]; 4(5):548-552. Available in: https://goo.su/zJUkT
Kocyigit R, Aydin R, Yanar M, Guler O, Diler A, Tuzemen N, Avci M, Ozyurek S, Hirik E, Kabakci D. Effect of doses of direct-fed microbials plus exogenous fibrolytic enzymes supplementation on growth, feed efficiency ratio and fecal consistency index of brown swiss and holstein Friesian Calves. Indian. J. Anim. Res. [Internet]. 2015; 49(1):63-69. doi: https://doi.org/p5mh DOI: https://doi.org/10.5958/0976-0555.2015.00014.X
Xiao JX, Guo LY, Alugongo GM, Wang YJ, Cao ZJ, Li SL. Effects of different feed type exposure in early life on performance, rumen fermentation, and feed preference of dairy calves. J. Dairy Sci. [Internet]. 2018; 101(9): 8169- 8181. doi: https://doi.org/p5mj DOI: https://doi.org/10.3168/jds.2018-14373
Kaya I, Öncüer A, Ünal Y, Yildiz S. Nutritive value of pastures in Kars district I. Botanical and nutrient composition at different stages of maturity. Turk. J. Vet. Anim. Sci. [Internet]. 2004 [15 May 2025]; 28(2):275-280. Available in: https://goo.su/a16921E
Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed. Arlington, VA, USA: AOAC. 2000.
Erwin E, Marco GJ, Emery E. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. JDS. [Internet]. 1961; 44(9):1768-1771. doi: https://doi.org/b53bnt DOI: https://doi.org/10.3168/jds.S0022-0302(61)89956-6
Ankaralı H, Ankaralı S. Hayvan deneylerinde verimliliği artıracak deney tasarımları ve denek sayısı. Anatol. Clin. [Internet]. 2019; 24(3):248-258. doi: https://doi.org/p5mp DOI: https://doi.org/10.21673/anadoluklin.556640
Charan J, Kantharia N. How to calculate sample size in animal studies?. J. Pharmacol. Pharmacother. [Internet]. 2013; 4(4):303-306. doi: https://doi.org/gf3sst DOI: https://doi.org/10.4103/0976-500X.119726
Festing MF. On determining sample size in experiments involving laboratory animals. Lab. Anim. [Internet]. 2018; 52(4):341-350. doi: https://doi.org/gdwpj6 DOI: https://doi.org/10.1177/0023677217738268
Duncan DB. Multiple range and multiple F tests. biometrics. [Internet]. 1955; 11(1):1-42. doi: https://doi.org/fhcz8h DOI: https://doi.org/10.2307/3001478
Winders T, Boyd B, Parrott T, Li W. 339 An Evaluation of the Effects of Feeding an Exogenous Fibrolytic Enzyme Product on the Growth Performance and Apparent Nutrient Digestibility of Growing Bison Calves Fed in a Commercial Feed Yard. J. Anim. Sci. [Internet]. 2023; 101(Suppl 3):270. doi: https://doi.org/p5mq DOI: https://doi.org/10.1093/jas/skad281.323
Beauchemin KA, Rode LM, Sewalt VJH. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Can. J. Anim. Sci. [Internet]. 1995; 75(4):641- 644. doi: https://doi.org/c98kxt DOI: https://doi.org/10.4141/cjas95-096
Titi HH, Tabbaa MJ. Efficacy of exogenous cellulase on digestibility in lambs and growth of dairy calves. Livest. Prod. Sci. [Internet]. 2004; 87(2-3):207-214. doi: https://doi.org/bpn35g DOI: https://doi.org/10.1016/j.livprodsci.2003.07.012
McAllister TA, Oosting SJ, Popp JD, Mir Z, Yanke LJ, Hristov AN, Treacher RJ, Cheng KJ. Effect of exogenous enzymes on digestibility of barley silage and growth performance of feedlot cattle. Can. J. Anim. Sci. [Internet]. 1999; 79(3):353-60 doi: https://doi.org/b552gg DOI: https://doi.org/10.4141/A98-099
Malik R, Bandla S. Effect of source and dose of probiotics and exogenous fibrolytic enzymes (EFE) on intake, feed efficiency, and growth of male buffalo (Bubalus bubalis) calves. Trop. Anim. Health. Prod. [Internet]. 2010; 42(6):1263-1269. doi: https://doi.org/cnznqp DOI: https://doi.org/10.1007/s11250-010-9559-5
Cruywagen C, Goosen L. Effect of an exogenous fibrolytic enzyme on growth rate, feed intake and feed conversion ratio in growing lambs. S. Afr. J. Anim. Sci. [Internet]. 2004 [cited 15 May 2025]; 34(Suppl 2):71-73. Available in: https://goo.su/x1cem
Beauchemin K, Colombatto D, Morgavi D, Yang W. Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J. Anim. Sci. [Internet]. 2003 [cited 15 May 2025]; 81(14_suppl_2):E37-E47. Available in: https://goo.su/6CWVdm
Tirado-González DN, Miranda-Romero LA, Ruíz-Flores A, Medina-Cuéllar SE, Ramírez-Valverde R, Tirado-Estrada G. Meta-analysis: effects of exogenous fibrolytic enzymes in ruminant diets. J. Appl. Anim. Res. [Internet]. 2018; 46(1):771-783 doi: https://doi.org/p5pn DOI: https://doi.org/10.1080/09712119.2017.1399135
Akbarian-Tefaghi M, Ghasemi E, Khorvash M. Performance, rumen fermentation and blood metabolites of dairy calves fed starter mixtures supplemented with herbal plants, essential oils or monensin. J. Anim. Physiol. Anim. Nutr. (Berl). [Internet]. 2018; 102(3):630-638. doi: https://doi.org/p5pp DOI: https://doi.org/10.1111/jpn.12842
Krause KM, Oetzel GR. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim. Feed Sci. Technol. [Internet]. 2006; 126(3-4):215-236. doi: https://doi.org/cg9fnm DOI: https://doi.org/10.1016/j.anifeedsci.2005.08.004
Romero JJ, Zarate MA, Queiroz OC, Han JH, Shin JH, Staples CR, Brown WF, Adesogan AT. Fibrolytic enzyme and ammonia application effects on the nutritive value, intake, and digestion kinetics of bermudagrass hay in beef cattle. J. Anim. Sci. [Internet]. 2013; 91(9):4345- 4356. doi: https://doi.org/f48mcn DOI: https://doi.org/10.2527/jas.2013-6261
He ZX, He ML, Walker ND, McAllister TA, Yang WZ. Using a fibrolytic enzyme in barley-based diets containing wheat dried distillers grains with solubles: ruminal fermentation, digestibility, and growth performance of feedlot steers. J. Anim. Sci. [Internet]. 2014; 92(9):3978- 3987. doi: https://doi.org/p5pq DOI: https://doi.org/10.2527/jas.2014-7707
McAllister TA, Stanford K, Bae HD, Treacher RJ, Hristov AN, Baah J, Shelford JA, Cheng KJ. Effect of a surfactant and exogenous enzymes on digestibility of feed and on growth performance and carcass traits of lambs. Can. J. Anim. Sci. [Internet]. 2000; 80(1):35-44. doi: https://doi.org/bsfwvd DOI: https://doi.org/10.4141/A99-053
Kazemi-Bonchenari M, Falahati R, Poorhamdollah M, Heidari SR, Pezeshki A. Essential oils improved weight gain, growth and feed efficiency of young dairy calves fed 18 or 20% crude protein starter diets. J. Anim. Physiol. Anim. Nutr.. [Internet]. 2018; 102(3):652-661. doi: https://doi.org/gdrt7z DOI: https://doi.org/10.1111/jpn.12867
Nsereko VL, Morgavi DP, Rode LLM, Beauchemin KA, McAllister TA. Effects of fungal enzyme preparations on hydrolysis and subsequent degradation of alfalfa hay fiber by mixed rumen microorganisms in vitro. Anim. Feed Sci. Technol. [Internet]. 2000; 88(3-4):153-170. doi: https://doi.org/crk69b DOI: https://doi.org/10.1016/S0377-8401(00)00225-X
