Comparison of serum biochemical parameters in ketotic and healthy Siirt Colored Mohair goats during early lactation to identify potential Biomarkers of lactation ketosis

Keywords: Lactational ketosis, colored Mohair goats, β– hydroxybutyric acid, serum biochemical parameters, early lactation

Abstract

This study aimed to compare serum biochemical parameters between ketotic and healthy Siirt colored mohair goats during early lactation, to diagnose subclinical lactation ketosis and identify potential biomarkers. A total of 77 female goats, aged 2 to 5 years and within 30 days postpartum, were evaluated under similar management conditions. The animals were classified into two groups based on serum β–hydroxybutyric acid levels: subclinical lactational ketosis (n = 37) and health controls (n = 40). β–hydroxybutyric acid levels were significantly elevated in the ketosis group (0.891 ± 0.0141 mmol·L-1) compared to the control group (0.595 ± 0.0159 mmol·L-1, P<0.001), confirming its diagnostic value. Other serum parameters did not show significant differences between the groups (P>0.05). On the other hand, effect size analysis revealed that glucose level decreased in does with subclinical lactational ketosis while cholesterol increased (large effect size). The study concluded that most liver and metabolic indicators remained within normal ranges, while glucose and cholesterol levels changed due to subclinical lactational ketosis. These data indicate that feeding based on pasture under extensive conditions may be insufficient to meet the energy requirements of does in lactation and emphasize the importance of early biochemical screening during lactation for effective management of metabolic disorders during early lactation stage in goats. Therefore, it is recommended the further studies to expand the knowledge of the effect of lactational ketosis on metabolic changes in goats.

Downloads

Download data is not yet available.

References

Thornton PK. Livestock production: recent trends, future prospects. Philos. Trans. R. Soc. B. Biol. Sci. [Internet]. 2010; 365(1554):2853-2867. doi: https://doi.org/b63ght DOI: https://doi.org/10.1098/rstb.2010.0134

Martens H. Increasing milk yield and negative energy balance: A gordian knot for dairy cows? Animals [Internet]. 2023; 13(19):3097. doi: https://doi.org/g926m8 DOI: https://doi.org/10.3390/ani13193097

Huang Y, Wen J, Kong Y, Zhao C, Liu S, Liu Y, Li L, Yang J, Zhu X, Zhao B, Cao B, Wang J. Oxidative status in dairy goats: periparturient variation and changes in subclinical hyperketonemia and hypocalcemia. BMC Vet. Res. [Internet]. 2021; 17(1):238. doi: https://doi.org/p655 DOI: https://doi.org/10.1186/s12917-021-02947-1

Chandu V, Kumari MK, Srija MSS, Naik KR, Srinivas G, Theja GK. Pregnancy toxaemia in goats: A review. Sci. World J. [Internet]. 2024; 4(9):3669-3675.doi: https://doi.org/p656

Simões J, Gutiérrez C. Nutritional and metabolic disorders in dairy goats. In: Simões J, Gutiérrez C, editors. Sustainable goat production in adverse environments, Vol. I. Vila Real, Portugal: Springer; 2018 [Cited Jun. 16, 2025]; p. 177-194. Available in: https://goo.su/u2732O DOI: https://doi.org/10.1007/978-3-319-71855-2_11

Wisnieski L, Norby B, Pierce S, Becker T, Gandy J, Sordillo L. Predictive models for early lactation diseases in transition dairy cattle at dry–off. Prev. Vet. Med. [Internet]. 2019; 163:68-78. doi: https://doi.org/p66b DOI: https://doi.org/10.1016/j.prevetmed.2018.12.014

Marutsova V, Binev R. Changes in blood enzyme activities and some liver parameters in goats with subclinical ketosis. Bulg. J. Vet. Med. [Internet]. 2020; 23(1):70-79. doi: https://doi.org/g5ggcp DOI: https://doi.org/10.15547/bjvm.2175

Kayri V, Irmak M, İrak K, Çelik ÖY. Comparison of some blood parameters in female romanov and hamdani sheep housed under the same nutritional conditions. Van. Vet. J. [Internet]. 2025; 36(1):8-13. doi: https://doi.org/p66h DOI: https://doi.org/10.36483/vanvetj.1562116

Paiano RB, Birgel DB, Bonilla J, Birgel Junior EH. Evaluation of biochemical profile of dairy cows with metabolic diseases in tropical conditions. Reprod. Domest. Anim. [Internet]. 2020;55(9):1219-1228. doi: https://doi.org/p66j DOI: https://doi.org/10.1111/rda.13768

Bani–Ismail Z, Al–Majali A, Amireh F, Al–Rawashdeh O. Metabolic profiles in goat does in late pregnancy with and without subclinical pregnancy toxemia. Vet. Clin. Pathol. [Internet]. 2008; 37(4):434-437. doi: https://doi.org/bxp8cn DOI: https://doi.org/10.1111/j.1939-165X.2008.00076.x

Oetzel GR. Monitoring and testing dairy herds for metabolic disease. Vet. Clin. North Am. Food Anim. Pract. [Internet]. 2004; 20(3):651-674. doi:https://doi.org/ccgxpc DOI: https://doi.org/10.1016/j.cvfa.2004.06.006

Ramin A, Asri–Rezai S, Macali S. Evaluation on serum glucose, BHB, urea and cortisol concentrations in pregnant ewes. Folia Vet. [Internet]. 2007 [Cited 31 Jun 2025]; 51(1):9-13. Available in: https://goo.su/ynU1U5i

Aly MA, Elshahawy II. Clinico–biochemical diagnosis of pregnancy toxemia in ewes with special reference to novel biomarkers. Alex. J. Vet. Sci. [Internet]. 2016; 48(2):96-102. doi: https://doi.org/g5rcqr DOI: https://doi.org/10.5455/ajvs.215993

Duffield T. Subclinical ketosis in lactating dairy cattle. Vet. Clin. North Am. Food Anim. Pract. [Internet]. 2000; 16(2):231-253, doi: https://doi.org/gj3dsq DOI: https://doi.org/10.1016/S0749-0720(15)30103-1

Tams TR. Handbook of Small Animal Gastroenterology. 2nd Ed. St. Louis (USA):Saunders; 2003.

Constable PD, Hinchcliff KW, Done SH, Grünberg W. Veterinary medicine: A textbook of the diseases of cattle, horses, sheep, pigs and goats. 11th Ed. Philadelphia (USA):Elsevier; 2016.

Đoković R, Ilić Z, Kurćubić V, Petrović M, Cincović M, Petrović MP, Caro–Perović V. Diagnosis of subclinical ketosis in dairy cows. Biotechnol. Anim. Husb. [Internet]. 2019; 35(2):111-125. doi: https://doi.org/p67c DOI: https://doi.org/10.2298/BAH1902111D

Shin E, Jeong JK, Choi IS, Kang HG, Hur TY, Jung YH, Kim IH. Relationships among ketosis, serum metabolites, body condition, and reproductive outcomes in dairy cows. Theriogenology. [Internet]. 2015; 84(2):252-260. doi: https://doi.org/gj3djc DOI: https://doi.org/10.1016/j.theriogenology.2015.03.014

Turgut AO, Koca D, Ünver A. Comparison of blood BHBA measurement devices for diagnosis of subclinical pregnancy toxaemia in sheep: A field study. Reprod. Domest. Anim. [Internet]. 2024; 59(5):e14589. doi: https://doi.org/p67g DOI: https://doi.org/10.1111/rda.14589

Hildebrand C, Hollenbach J, Seeger B, Pfarrer C. Beta– Hydroxybutyrate effects on bovine caruncular epithelial cells: A model for investigating the peri–implantation period disruption in ketotic dairy cows. Animals [Internet]. 2023; 13(18):2950. doi: https://doi.org/p67h DOI: https://doi.org/10.3390/ani13182950

Irmak M, Kayri V, Tufan T, Coşkun D, Özcan C, Çelik Ö, Denli M. The effect of β–carotene and vitamin E on metabolic profiles in nutritionally flushed sheep. S. Afr. J. Anim. [Internet]. 2022; 52(6):867-872. doi: https://doi.org/p67j DOI: https://doi.org/10.4314/sajas.v52i6.12

Turgut AO, Kucuk M, Irmak M, Ozcan C, Koca D, Gulendag E, Onen MF, Dogan R, Unver A, Keskin IH. Subclinical pregnancy toxemia affects blood parameters of ewes and impairs postnatal growth and development of lambs. Vet. Med. Sci. [Internet]. 2025; 11(3):e70259. doi: https://doi.org/p67k DOI: https://doi.org/10.1002/vms3.70259

Vasava PR, Jani RG, Goswami HV, Rathwa SD, Tandel FB. Studies on clinical signs and biochemical alteration in pregnancy toxemic goats. Vet. World [Internet]. 2016; 9(8):869-874. doi: https://doi.org/g5ggbz DOI: https://doi.org/10.14202/vetworld.2016.869-874

Zobel G, Leslie K, Weary DM, von Keyserlingk MA. Ketonemia in dairy goats: effect of dry period length and effect on lying behavior. J. Dairy Sci. [Internet]. 2015; 98(9):6128-6138. doi: https://doi.org/f7pfk8 DOI: https://doi.org/10.3168/jds.2014-9136

Yadav SN, Kalita D, Phukan A, Das B, Dutta T, Mahato G, Tamuly S, Barman D, Bharali K. A comparative therapeutic study on subclinical ketosis of goat. J. Entomol. Zool. Stud. [Internet]. 2018; [Cited Jun. 31, 2025]; 6(3):673-676. Available in: https://goo.su/6Srvn

González FD, Muiño R, Pereira V, Campos R, Benedito JL. Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high–yielding dairy cows. J. Dairy Sci. [Internet]. 2011; 12(3):251-255. doi: https://doi.org/dd2sp2 DOI: https://doi.org/10.4142/jvs.2011.12.3.251

Overton T, Waldron M. Nutritional management of transition dairy cows: strategies to optimize metabolic health. J. Dairy Sci. [Internet]. 2004; 87:E105-E119. doi: https://doi.org/dcgtn5 DOI: https://doi.org/10.3168/jds.S0022-0302(04)70066-1

Tufarelli V, Puvača N, Glamočić D, Pugliese G, Colonna MA. The most important metabolic diseases in dairy cattle during the transition period. Animals [Internet]. 2024; 14(5):816. doi: https://doi.org/p67m DOI: https://doi.org/10.3390/ani14050816

Bertoni G, Trevisi E. Use of the liver activity index and other metabolic variables in the assessment of metabolic health in dairy herds. Vet. Clin. North Am. Food Anim. Pract. [Internet]. 2013; 29(2):413-431. doi: https://doi.org/g7vhp4 DOI: https://doi.org/10.1016/j.cvfa.2013.04.004

Iluz–Freundlich D, Zhang M, Uhanova J, Minuk GY. The relative expression of hepatocellular and cholestatic liver enzymes in adult patients with liver disease. Ann. Hepatol. [Internet]. 2020; 19(2):204-208. doi: https://doi.org/g9j74v DOI: https://doi.org/10.1016/j.aohep.2019.08.004

Liu S, Kong Y, Wen J, Huang Y, Liu Y, Zhu X, Zhao B, Cao B, Wang J. Surrogate indexes of insulin resistance in dairy goats: Transitional variation in subclinical hyperketonemia. Vet. Sci. [Internet]. 2021; 8(6):102. doi: https://doi.org/gkf2vq DOI: https://doi.org/10.3390/vetsci8060102

Huang Y, Kong Y, Shen B, Li B, Loor JJ, Tan P, Wei B, Mei L, Zhang Z, Zhao C, Zhu X, Qi S, Wang J. Untargeted metabolomics and lipidomics to assess plasma metabolite changes in dairy goats with subclinical hyperketonemia. J. Dairy Sci. [Internet]. 2023; 106(5):3692-3705. doi: https://doi.org/p67q DOI: https://doi.org/10.3168/jds.2022-22812

Şahal M, Çolakoğlu EÇ, Alihosseini H. Ketozis ve yağlı karaciğer sendromunun tedavisinde güncel yaklaşımlar ve tedavideki başarısızlığın nedenleri [Ketosis and fatty liver syndrome: current insights and causes of failure in treatment]. Turkiye Klinikleri J. Vet. Sci. [Internet]. 2011; [Cited July 31, 2025]; 2(2):140-150. Turkish. Available in: https://goo.su/k0wf0

Iqbal R, Beigh SA, Mir AQ, Shaheen M, Hussain SA, Nisar M, Dar AA. Evaluation of metabolic and oxidative profile in ovine pregnancy toxemia and to determine their association with diagnosis and prognosis of disease. Trop. Anim. Health Prod. [Internet]. 2022; 54(6):338. doi: https://doi.org/g5ggb8 DOI: https://doi.org/10.1007/s11250-022-03339-9

Kelay A, Assefa A. Causes, control and prevention methods of pregnancy toxemia in ewe: A review. J. Life Sci. Biomed. [Internet]. 2018; [Cited Jun 31, 2025]; 8(4):69-76. Available in: https://goo.su/QdgEzL

Simões P, Bexiga R, Lamas L, Lima M. Pregnancy toxaemia in small ruminants. In: Freitas Duarte A, Lopes da Costa L, editors. Advances in animal health, medicine and production. Lisbon (Portugal): Springer; 2020; p. 541-556. DOI: https://doi.org/10.1007/978-3-030-61981-7_30

Published
2025-09-29
How to Cite
1.
Irmak M, Turgut AO, Eroğlu M, Irak K, Tufan T, Koca D, Keskin IH, Doğan R, Ünver A. Comparison of serum biochemical parameters in ketotic and healthy Siirt Colored Mohair goats during early lactation to identify potential Biomarkers of lactation ketosis. Rev. Cient. FCV-LUZ [Internet]. 2025Sep.29 [cited 2025Nov.13];35(3):6. Available from: http://www.produccioncientifica.luz.edu.ve/index.php/cientifica/article/view/44464
Section
Veterinary Medicine