Expression patterns of growth differentiation factor 8 protein in ovarian follicles and the corpus luteum of domestic cats
Abstract
The Growth Differentiation Factor 8 is a member of the Transforming Growth Factor Beta family and plays a vital role in ovarian dynamics. The present study investigated: i) the expression patterns of Growth Differentiation Factor 8 protein in feline ovarian follicles and corpus luteum, and ii) the effect of reproductive cycle stages on ovarian GDF8 expression in domestic cats. Ovaries were collected from 28 healthy domestic female cats undergoing elective ovariohysterectomy and classified into follicular (n = 15) and luteal (n = 13) phase groups. Growth Differentiation Factor 8 protein expression was assessed via enzyme–linked immunosorbent assay (ELISA) and immunohistochemistry. In primordial follicles, Growth Differentiation Factor 8 immunoreactivity was restricted to the oocyte. In primary and secondary follicles, both oocytes and granulosa cells exhibited Growth Differentiation Factor 8 staining, while thecal cells remained negative. In antral follicles, Growth Differentiation Factor 8 was present in oocytes, granulosa cells, and follicular fluid, but absent in thecal cells. In the corpus luteum, Growth Differentiation Factor 8 immunoreactivity varied by developmental stage. Mild staining was observed in luteal cells during early development and maintenance. Severe immunoreactivity appeared in late developmental and maintenance stages, while moderate staining was present during regression. Non–steroidogenic cells showed no reactivity. No significant differences in ovarian Growth Differentiation Factor 8 expression were found between follicular and luteal phases, nor between maintenance and regression stages of the corpus luteum. Growth Differentiation Factor 8 may significantly regulate folliculogenesis and corpus luteum development in the feline ovary.
Downloads
References
McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF–p superfamily member. Nature [Internet]. 1997; 387:83–90. doi: https://doi.org/c935zd DOI: https://doi.org/10.1038/387083a0
McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. [Internet]. 1997; 94(23):12457–12461. doi: https://doi.org/b77t7x DOI: https://doi.org/10.1073/pnas.94.23.12457
Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genetics [Internet]. 2007; 3(5):e79. doi: https://doi.org/c976h7 DOI: https://doi.org/10.1371/journal.pgen.0030079
Hadjipavlou GO, Matika AC, SC Bishop. Two single nucleotide polymorphisms in the myostatin (GDF8) gene have significant association with muscle depth of commercial Charollais sheep. Anim. Genet. [Internet]. 2008; 39(4):346–353. doi: https://doi.org/bk224g DOI: https://doi.org/10.1111/j.1365-2052.2008.01734.x
Wang S, Fang L, Cong L, Chung PWC, Li TC, Chan DYL. Myostatin: a multifunctional role in human female reproduction and fertility – a short review. Reprod. Biol. Endocrinol. [Internet]. 2022; 20(1):96. doi: https://doi.org/qj32 DOI: https://doi.org/10.1186/s12958-022-00969-4
Lin TT, Chang HM, Hu XL, Leung PCK, Zhu YM. Follicular localization of growth differentiation factor 8 and its receptors in normal and polycystic ovary syndrome ovaries. Biol. Reprod. [Internet]. 2018; 98(5):683–694. doi: https://doi.org/gdj9mk DOI: https://doi.org/10.1093/biolre/ioy029
Chang HM, Fang L, Cheng JC, Klausen C, Sun YP, Leung PCK. Growth differentiation factor 8 down–regulates pentraxin 3 in human granulosa cells. Mol. Cel. Endocrinol. [Internet]. 2015; 404:82–90. doi: https://doi.org/f65knv DOI: https://doi.org/10.1016/j.mce.2015.01.036
Chang HM, Fang L, Cheng JC, Taylor EL, Sun YP, Leung PCK. Effects of growth differentiation factor 8 on steroidogenesis in human granulosa–lutein cells. Fertil. Steril. [Internet]. 2016; 105(2):520–528. doi: https://doi.org/f8g96j DOI: https://doi.org/10.1016/j.fertnstert.2015.10.034
Yoon JD, Hwang SU, Kim M, Jeon Y, Hyun SH. Growth differentiation factor 8 regulates SMAD2/3 signaling and improves oocyte quality during porcine oocyte maturation in vitro. Biol. Reprod. [Internet]. 2019; 101(1):63–75. doi: https://doi.org/qj33 DOI: https://doi.org/10.1093/biolre/ioz066
Bai L, Pan H, Zhao Y, Chen Q, Xiang Y, Yang X, Zhu Y. The exploration of poor ovarian response–related risk factors: a potential role of growth differentiation factor 8 in predicting ovarian response in IVF–ET patient. Front. Endocrinol. [Internet]. 2021; 12:708089. doi: https://doi.org/qj34 DOI: https://doi.org/10.3389/fendo.2021.708089
Han SZ, Li ZY, Paek HJ, Choe HM, Yin XJ, Quan BH. Reproduction traits of heterozygous myostatin knockout sows crossbred with homozygous myostatin knockout boars. Reprod. Domest. Anim. [Internet]. 2021; 56(1):26–33. doi: https://doi.org/gpn7sr DOI: https://doi.org/10.1111/rda.13845
Liu XY, Choe HM, Li ZY, Jin ZY, Chang SY, Kang JD, Quan B. Positive growth of smooth muscle in uterine horns of myostatin homozygous mutant gilt. Res. Vet. Sci. [Internet]. 2022; 152:228–235. doi: https://doi.org/qj35 DOI: https://doi.org/10.1016/j.rvsc.2022.07.030
Kubota K, Sato F, Aramaki S, Soh T, Yamauchi N, Hattori MA. Ubiquitous expression of myostatin in chicken embryonic tissues: its high expression in testis and ovary. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. [Internet]. 2007; 148(3):550–555. doi: https://doi.org/b8hcf4 DOI: https://doi.org/10.1016/j.cbpa.2007.07.004
Cheewasopit W, Laird M, Glister C, Knight PG. Myostatin is expressed in bovine ovarian follicles and modulates granulosal and thecal steroidogenesis. Reproduction [Internet]. 2018; 156(4):375–386. doi: https://doi.org/gfdf4g DOI: https://doi.org/10.1530/REP-18-0114
Zhu P, Li H, Huang G, Cui J, Zhang R, Cui K, Yang S, Shi D. Molecular cloning, identification, and expression patterns of myostatin gene in water buffalo (Bubalus bubalis). Anim. Biotechnol. [Internet]. 2018; 29(1):26–33. doi: https://doi.org/qj37 DOI: https://doi.org/10.1080/10495398.2017.1289941
Coe RJ, Grint NJ, Tivers MS, Hotston–Moore A, Holt PE. Comparison of flank and midline approaches to the ovariohysterectomy of cats. Vet. Rec. [Internet]. 2006; 159(10):309–313. doi: https://doi.org/fsdz6b DOI: https://doi.org/10.1136/vr.159.10.309
Braun BC, Hryciuk MM, Meneghini D. Transcriptome analysis of corpora lutea in domestic cats (Felis catus) reveals strong differences in gene expression of various hormones, hormone receptors and regulators across different developmental stages. BMC Genomics [Internet]. 2025; 26(1):325. doi: https://doi.org/qj38 DOI: https://doi.org/10.1186/s12864-025-11510-3
Bristol–Gould S, Woodruff TK. Folliculogenesis in the domestic cat (Felis catus). Theriogenology [Internet]. 2006; 66(1):5–13. doi: https://doi.org/cmwtp8 DOI: https://doi.org/10.1016/j.theriogenology.2006.03.019
Hamouzova P, Cizek P, Novotny R, Bartoskova A, Tichy F. Distribution of mast cells in the feline ovary in various phases of the oestrous cycle. Reprod. Domest. Anim. [Internet]. 2017; 52(3):483–486. doi: https://doi.org/f9rbfd DOI: https://doi.org/10.1111/rda.12938
Gozer A, Bahan O, Dogruer G, Kutlu T. Serum antimüllerian hormone concentrations in female cats. Relation with ovarian remnant syndrome, ovarian cysts and gonadectomy status. Theriogenology [Internet]. 2023; 200:106–113. doi: https://doi.org/kn83 DOI: https://doi.org/10.1016/j.theriogenology.2023.02.010
Gozer A, Dogruer G, Gokcek I, Kutlu T, Bahan O, Yagcı IP. Anti–müllerian hormone expression in the ovarian follicles and factors related to serum anti–müllerian hormone concentrations in the domestic queens. J. Hellenic Vet. Med. Soc. [Internet]. 2024 [cited Aug 10, 2025 ]; 75(1):6915– 6924. Available in: https://goo.su/UKoe0
Amelkina O, Braun BC, Dehnhard M, Jewgenow K. The corpus luteum of the domestic cat: histologic classification and intraluteal hormone profile. Theriogenology [Internet]. 2015; 83(4):711–720. doi: https://doi.org/f622wx DOI: https://doi.org/10.1016/j.theriogenology.2014.11.008
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal. Biochem. [Internet]. 1985; 150(1):76–85. doi: https://doi.org/dwwhjg DOI: https://doi.org/10.1016/0003-2697(85)90442-7
Bris t ol SK , W oodruff TK . F ol licle –r es trict ed compartmentalization of transforming growth factor β superfamily ligands in the feline ovary. Biol. Reprod. [Internet]. 2004; 70(3):846–859. doi: https://doi.org/ct9bgr DOI: https://doi.org/10.1095/biolreprod.103.021857
El–Magd MA, Ghoniem AM, Helmy NM, Abdelfattah–Hassan A, Saleh AA, Abd Allah EA, Essawi WM, Kahilo KA. Effect of myostatin inhibitor (myostatin pro–peptide) microinjection on in vitro maturation and subsequent early developmental stages of buffalo embryo. Theriogenology [Internet]. 2019; 126:230–238. doi: https://doi.org/qj39 DOI: https://doi.org/10.1016/j.theriogenology.2018.12.027
Fang L, Chang HM, Cheng JC, Yu Y, Leung PCK, Sun YP. Growth differentiation factor–8 decreases StAR expression through ALK5–mediated Smad3 and ERK1/2 signaling pathways in luteinized human granulosa cells. Endocrinology [Internet]. 2015; 156(12):4684–4694. doi: https://doi.org/f77vnx DOI: https://doi.org/10.1210/en.2015-1461
Fang L, Wang S, Li Y, Yu Y, Li Y, Yan Y, Cheng JC, Sun YP. High GDF–8 in follicular fluid is associated with a low pregnancy rate in IVF patients with PCOS. Reproduction [Internet]. 2020; 160(1):11–19. doi: https://doi.org/qj4b DOI: https://doi.org/10.1530/REP-20-0077
Lee SJ, McPherron AC. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. [Internet]. 2001; 98(16):9306–9311. doi: https://doi.org/bwfpjj DOI: https://doi.org/10.1073/pnas.151270098
Ciarmela P, Wiater E, Smith SM, Vale W. Presence, actions, and regulation of myostatin in rat uterus and myometrial cells. Endocrinology [Internet]. 2009; 150(2):906–914. doi: https://doi.org/c4ztw2 DOI: https://doi.org/10.1210/en.2008-0880
Murphy BD. Models of luteinization. Biol. Reprod. [Internet]. 2000; 63(1):2–11. doi: https://doi.org/bt6g7r
Arikan Ş, Yigit AA, Kalender H. Size distribution of luteal cells during pseudopregnancy in domestic cats. Reprod. Domest. Anim. [Internet]. 2009; 44(5):842–845. doi: https://doi.org/c76zmn DOI: https://doi.org/10.1111/j.1439-0531.2008.01099.x
Wong CL, Huang YY, Ho WK, Poon HK, Cheung PL, O WS, Chow PH. Growth–differentiation factor–8 (GDF–8) in the uterus: its identification and functional significance in the golden hamster. Reprod. Biol. Endocrinol. [Internet]. 2009; 7:134. doi: https://doi.org/b89xxg DOI: https://doi.org/10.1186/1477-7827-7-134
Wallner C, Rausch A, Drysch M, Dadras M, Wagner JM, Becerikli M, Lehnhardt M, Behr B. Regulatory aspects of myogenic factors GDF–8 and follistatin on the intake of combined oral contraceptives. Gynecol. Endocrinol. [Internet]. 2020; 36(5):406–412. doi: https://doi.org/qj4j DOI: https://doi.org/10.1080/09513590.2019.1666816
Du R, Du J, Qin J, Cui LC, Hou J, Guan H, An XR. Molecular cloning and sequence analysis of the cat myostatin gene 5 regulatory region. Afr. J. Biotechnol. [Internet]. 2011; 10(51):10366–10372. doi: https://doi.org/qj4k DOI: https://doi.org/10.5897/AJB10.2577















