Redes neuronales en la valoración crediticia bajo incertidumbre en pequeñas y medianas empresas de Ecuador
Abstract
Las pequeñas y medianas empresas manufactureras de la ciudad de Cuenca Ecuador, enfrentan un riesgo financiero debido a su poca capacidad de cumplimiento de requisitos para la concesión de créditos por parte de las entidades financieras ecuatorianas. El objetivo de la investigación es desarrollar la técnica del expertizaje y contraexpertizaje, herramientas que ofrece la lógica difusa con el propósito de nutrir un grafo de redes neuronales para determinar los requisitos de menor cumplimiento, para acceder a créditos financieros por las organizaciones estudiadas. En lo metodológico, la investigación es de tipo explicativo, con enfoque cuantitativo, cuyo propósito es reducir la incertidumbre en la información obtenida de los expertos financieros de las empresas en estudio. Dentro de los resultados, se evidencia que en la aplicación de las herramientas del expertizaje, contraexpertizaje y redes neuronales, los requisitos de menor cumplimiento son similares, siendo el “flujo de caja proyectado” y el “plan de negocios”. Se concluye que con este aporte los directivos de las empresas conocerán cuáles son los requisitos bancarios de menor cumplimiento, a partir de ello podrán tomar decisiones correctas con el propósito de llegar a la obtención de créditos financieros.
Downloads
References
Achanga, P., Shehab, E., Roy, R., y Nelder, G. (2012). A fuzzy-logic advisory system for lean manufacturing within SMEs. International Journal of Computer Integrated Manufacturing, 25(9), 839-852. https://doi.org/10.1080/0951192X.2012.665180
Agrawal, R., Asokan, P., y Vinodh, S. (2017). Benchmarking fuzzy logic and ANFIS approaches for leanness evaluation in an Indian SME: A case study. Benchmarking: An International Journal, 24(4), 973-993. https://doi.org/10.1108/BIJ-06-2016-0083
Alber, M., Lapuschkin, S., Seegerer, P., Hägele, M., Schütt, K. T., Montavon, G., Samek, W., Müller, K.-R., Dähne, S., y Kindermans, P.-J. (2019). iNNvestigate neural networks! Journal of Machine Learning Research, 20, 93. https://www.jmlr.org/papers/v20/18-540.html
Alegre, J., Sengupta, K., y Lapiedra, R. (2013). Knowledge management and innovation performance in a high-tech SMEs industry. International Small Business Journal, 31(4), 454-470. https://doi.org/10.1177/0266242611417472
Aleksić, A., Stefanović, M., Arsovski, S., y Tadić, D. (2013). An assessment of organizational resilience potential in SMEs of the process industry, a fuzzy approach. Journal of Loss Prevention in the Process Industries, 26(6), 1238-1245. https://doi.org/10.1016/j.jlp.2013.06.004
Almadi, A. I. M., Al Mamlook, R. E., Almarhabi, Y., Ullah, I., Jamal, A., y Bandara, N. (2022). A fuzzy-logic approach based on driver decision-making behavior modeling and simulation. Sustainability, 14(14), 8874. https://doi.org/10.3390/su14148874
Andino, T. S., Rodríguez, R. E., Párraga, M. I., y Molina, C. A. (2022). Pequeñas y medianas empresas y la política comercial internacional del Ecuador. Revista de Ciencias Sociales (Ve), XXVIII(4), 448-469. https://doi.org/10.31876/rcs.v28i4.39141
Arévalo, K. P., y Pastrano, E. V. (2015). Diagnóstico de las fuentes no tradicionales de financiamiento empleadas por las PYMES del Cantón Quevedo. Ecuador. Revista Publicando, 2(3), 149-162. https://revistapublicando.org/revista/index.php/crv/article/view/41
Ávila, P., Mendoza, A. A., Pinargote, H. M., y Fernández, L. (2019). Decisiones de financiamiento de las pymes ecuatorianas. Suplemento CICA Multidisciplinario, 3(8), 30-42. https://uleam.suplementocica.org/index.php/SuplementoCICA/article/view/78
Bhuiyan, N., y Baghel, A. (2005). An overview of continuous improvement: From the past to the present. Management Decision, 43(5), 761-771. https://doi.org/10.1108/00251740510597761
Bolisani, E., y Bratianu, C. (2017). Knowledge strategy planning: An integrated approach to manage uncertainty, turbulence, and dynamics. Journal of Knowledge Management, 21(2), 233-253. https://doi.org/10.1108/JKM-02-2016-0071
Boloș, M.-I., Bradea, I.-A., y Delcea, C. (2019). A fuzzy logic algorithm for optimizing the investment decisions within companies. Symmetry, 11(2), 186. https://doi.org/10.3390/sym11020186
Buscema, M. (2002). A brief overview and introduction to artificial neural networks. Substance Use & Misuse, 37(8-10), 1093-1148. https://doi.org/10.1081/JA-120004171
Byukusenge, E., Munene, J., y Orobia, L. (2016). Knowledge management and business performance: Mediating effect of innovation. Journal of Business and Management Sciences, 4(4), 82-92. https://nru.uncst.go.ug/handle/123456789/6025
Çakar, N. D., y Ertürk, A. (2010). Comparing innovation capability of small and medium‐sized enterprises: Examining the effects of organizational culture and empowerment. Journal of Small Business Management, 48(3), 325-359. https://doi.org/10.1111/j.1540-627X.2010.00297.x
Cavus, N. (2010). The evaluation of Learning Management Systems using an artificial intelligence fuzzy logic algorithm. Advances in Engineering Software, 41(2), 248-254. https://doi.org/10.1016/j.advengsoft.2009.07.009
Cerrato, D., Crosato, L., y Depperu, D. (2016). Archetypes of SME internationalization: A configurational approach. International Business Review, 25(1, Part B), 286-295. https://doi.org/10.1016/j.ibusrev.2015.05.010
Chavosh, M., Mansour, S., y Karamipour, A. (2021). An AHP-based multi-criteria model for assessment of the social sustainability of technology management process: A case study in banking industry. Technology in Society, 65, 101602. https://doi.org/10.1016/j.techsoc.2021.101602
Clauss, T., Breier, M., Kraus, S., Durst, S., y Mahto, R. V. (2022). Temporary business model innovation–SMEs’ innovation response to the Covid‐19 crisis. R&D Management, 52(2), 294-312. https://doi.org/10.1111/radm.12498
Delgado, D. D., y Chávez, G. P. (2018). Las Pymes en el Ecuador y sus fuentes de financiamiento. Revista Observatorio de la Economía Latinoamericana, (Abril). https://www.eumed.net/rev/oel/2018/04/pymes-ecuador-financiamiento.html#google_vignette
Díaz, J. F., Coba, E., y Navarrete, P. (2017). Fuzzy logic and financial risk. A proposed classification of financial risk to the cooperative sector. Contaduría y Administración, 62(5), 1687-1703. https://doi.org/10.1016/j.cya.2017.10.001
Ding, S., Li, H., Su, C., Yu, J., y Jin, F. (2013). Evolutionary artificial neural networks: A review. Artificial Intelligence Review, 39, 251-260. https://doi.org/10.1007/s10462-011-9270-6
Donato, V. N. (2015). Informe 2013 / 2014: Evolución reciente, situación actual y desafíos para 2015. Tema especial: El entorno local y el acceso a infraestructura de las PyME industriales. Observatorio Pyme. https://www.observatoriopyme.org.ar/courses/informe-2013-%E2%80%93-2014.-evoluci%C3%B3n-reciente%2C-situaci%C3%B3n-actual-y-perspectivas-2015
Dvali, G. (2018). Black holes as brains: Neural networks with area law entropy. Fortschritte der Physik, 66(4), 1800007. https://doi.org/10.1002/prop.201800007
Eggers, F. (2020). Masters of disasters? Challenges and opportunities for SMEs in times of crisis. Journal of Business Research, 116, 199-208. https://doi.org/10.1016/j.jbusres.2020.05.025
Franco, M. D. C., Gómez, F., y Serrano, K. (2019). Determinantes del acceso al crédito para la PYME del Ecuador. Revista Conrado, 15(67), 295-303. https://conrado.ucf.edu.cu/index.php/conrado/article/view/961
García, A., Luna, D., Cobos, A., Lameiras, D., Ortiz-Moreno, H., y Güereca, L. P. (2018). A methodological framework of eco-efficiency based on fuzzy logic and Life Cycle Assessment applied to a Mexican SME. Environmental Impact Assessment Review, 68, 38-48. https://doi.org/10.1016/j.eiar.2017.10.008
García T., Galo H., Villafuerte O., y Marcelo F. (2015). Las restricciones al financiamiento de las Pymes del Ecuador y su incidencia en la política de inversiones. Actualidad Contable Faces, 18(30), 49-73. http://erevistas.saber.ula.ve/index.php/actualidadcontable/article/view/6734
Garcia-Muiña, F. E., González-Sánchez, R., Ferrari, A. M., Volpi, L., Pini, M., Siligardi, C., y Settembre-Blundo, D. (2019). Identifying the equilibrium point between sustainability goals and circular economy practices in an Industry 4.0 manufacturing context using eco-design. Social Sciences, 8(8), 241. https://doi.org/10.3390/socsci8080241
Gitman, L. J., y Zutter, C. J. (2012). Principios de administración financiera. Pearson Educación.
Gubareva, E. A., y Shemyakova, E. (2021). Neural networks in the digital economy. In E. G. Popkova, V. N. Ostrovskaya y A. V. Bogoviz (Eds.), Socio-economic Systems: Paradigms for the Future (Vol. 314, pp. 827-835). Springer. https://doi.org/10.1007/978-3-030-56433-9_87
Herghiligiu, I. V., Robu, I.-B., Pislaru, M., Vilcu, A., Asandului, A. L., Avasilcăi, S., y Balan, C. (2019). Sustainable environmental management system integration and business performance: A balance assessment approach using fuzzy logic. Sustainability, 11(19), 5311. https://doi.org/10.3390/su11195311
Instituto de Estadísticas y Censos - INEC (2023). Registro Estadístico de Empresas (REEM) – 2023. Definitivo INEC. https://www.ecuadorencifras.gob.ec/directoriodeempresas/
Kang, H., y Guo, D. (2023). Value evaluation of data resources based on artificial neural network in digital economy. Soft Computing, 1-10. https://doi.org/10.1007/s00500-023-08361-z
Kaufmann, A., y Gil, J. (1986). Introducción de la teoría de los subconjuntos borrosos a la gestión de las empresas. Editorial Milladoiro
Kaufmann, A., y Gil, J. (1989). Modelos para la investigación de efectos olvidados. Editorial Milladoiro.
Kindström, D., Carlborg, P., y Nord, T. (2024). Challenges for growing SMEs: A managerial perspective. Journal of Small Business Management, 62(2), 700-723. https://doi.org/10.1080/00472778.2022.2082456
Kosko, B. (1995). Pensamiento borroso: La nueva ciencia de la lógica borrosa. Editorial Crítica.
Kottaridi, C., Louloudi, K., y Karkalakos, S. (2019). Human capital, skills and competencies: Varying effects on inward FDI in the EU context. International Business Review, 28(2), 375-390. https://doi.org/10.1016/j.ibusrev.2018.10.008
Kraus, S., Moog, P., Schlepphorst, S., y Raich, M. (2013). Crisis and turnaround management in SMEs: A qualitative-empirical investigation of 30 companies. International Journal of Entrepreneurial Venturing, 5(4), 406-430. http://dx.doi.org/10.1504/ijev.2013.058169
Kristanti, F. T., Safriza, Z., y Salim, D. F. (2023). Are Indonesian construction companies financially distressed? A prediction using artificial neural networks. Investment Management and Financial Innovations, 20(2), 41-52. https://doi.org/10.21511/imfi.20(2).2023.04
Kusa, R., Duda, J., y Suder, M. (2021). Explaining SME performance with fsQCA: The role of entrepreneurial orientation, entrepreneur motivation, and opportunity perception. Journal of Innovation, 6(4), 234-245. https://doi.org/10.1016/j.jik.2021.06.001
Larrán, M., García-Borbolla, A., y Giner, Y. (2010). Factores determinantes del racionamiento de crédito a las PYMES. Un estudio empírico en Andalucía. Investigaciones Europeas de Dirección y Economía de la Empresa, 16(2), 63-82. https://doi.org/10.1016/S1135-2523(12)60112-9
Lee, C. S., y Wong, K. Y. (2017). A fuzzy logic-based knowledge management performance measurement system for SMEs. Cybernetics and Systems, 48(4), 277-302. https://doi.org/10.1080/01969722.2017.1284532
Leoshchenko, S., Oliinyk, A., Subbotin, S., y Zaiko, T. (2020). Using recurrent neural networks for data-centric business. In D. Ageyev, T. Radivilova y N. Kryvinska (Eds.), Data-Centric Business and Applications: Evolvements in Business Information Processing and Management. (Vo. 42, pp. 73-91). Springer International Publishing. https://doi.org/10.1007/978-3-030-35649-1_4
Li, X., Wang, J., y Yang, C. (2023). Risk prediction in financial management of listed companies based on optimized BP neural network under digital economy. Neural Computing and Applications, 35(3), 2045-2058. https://doi.org/10.1007/s00521-022-07377-0
Liu, H. (2024). Neural dynamics: Unraveling the impact of digital economy on regional growth. Soft Computing, 28(3), 2649-2669. https://doi.org/10.1007/s00500-023-09571-1
Luna, K. A., Melean, R. A., y Ferrer, M. A. (2023). Matriz de efectos olvidados para la reactivación económica de empresas del sector cerámico en Ecuador. Revista de Ciencias Sociales (Ve), XXIX(3), 355-374. https://doi.org/10.31876/rcs.v29i3.40717
Luna, K. A., Sarmiento, W. H., y Andrade, D. J. (2022). Financial ratios with fuzzy logic approach. New estimation perspective. Revista Venezolana de Gerencia, 27(99), 959-972. https://doi.org/10.52080/rvgluz.27.99.7
Luna, K. A., Sarmiento, W. H., y Ordoñez, J. (2020). Innovación en empresas de Cuenca- Ecuador: Empleo de modelística inteligente en el sector textil. Revista de Ciencias Sociales (Ve), XXVI(3), 148-162. https://doi.org/10.31876/rcs.v26i3.33239
Madrid‐Guijarro, A., Garcia, D., y Van Auken, H. (2009). Barriers to innovation among Spanish manufacturing SMEs. Journal of small business management, 47(4), 465-488. https://doi.org/10.1111/j.1540-627X.2009.00279.x
Maes, J., y Sels, L. (2014). SMEs’ radical product innovation: The role of internally and externally oriented knowledge capabilities. Journal of Small Business Management, 52(1), 141-163. https://doi.org/10.1111/jsbm.12037
Mählmeyer, V., Rampeltshammer, L., y Hertwig, M. (2017). European Works Councils during the financial and economic crisis: Activation, stagnation, or disintegration? European Journal of Industrial Relations, 23(3), 225–242. https://doi.org/10.1177/0959680116685951
Martinez-Conesa, I., Soto-Acosta, P., y Carayannis, E. G. (2017). On the path towards open innovation: Assessing the role of knowledge management capability and environmental dynamism in SMEs. Journal of Knowledge Management, 21(3), 553-570. https://doi.org/10.1108/JKM-09-2016-0403
Medina, S. (2006). Estado de la cuestión acerca del uso de la lógica difusa en problemas financieros. Cuadernos de Administración, 32(19), 195-223. https://revistas.javeriana.edu.co/index.php/cuadernos_admon/article/view/4313
Muhamediyeva, D., y Abdul-Azalova, M. (2022). Application of the theory of fuzzy logic for analysis of management systems of business processes of an enterprise. Scientific Collection InterConf, 22(113), 467-471. https://doi.org/10.51582/interconf.19-20.06.2022.049
Niemeyer, J. F., Rudolf, S., Kvaratskhelia, L., Mennenga, M., y Herrmann, C. (2022). A creativity-driven case-based reasoning approach for the systematic engineering of sustainable business models. Procedia CIRP, 105, 470-475, https://doi.org/10.1016/j.procir.2022.02.078
Olarte, J. C. (2006). Incertidumbre y evaluación de riesgos financieros. Scientia et Technica, 3(32), 347-350. https://revistas.utp.edu.co/index.php/revistaciencia/article/view/6301
Partanen, J., Kauppila, O.-P., Sepulveda, F., y Gabrielsson, M. (2018). Turning strategic network resources into performance: The mediating role of network identity of small-and medium-sized enterprises. Strategic Entrepreneurship Journal, 14(52), 178-197. https://doi.org/10.1002/sej.1296
Peñarreta, M. (2017). Acceso al financiamiento y emprendimiento en la región 7 de Ecuador. Revista Publicando, 4(13), 62-73. https://revistapublicando.org/revista/index.php/crv/article/view/777
Pérez, I., y Melero, R. (2006). Evaluación de aspirantes a docentes en la Facultad de Ingeniería de la Universidad del Valle del Momboy mediante un modelo difuso de soporte de decisiones. Telos: Revista de Estudios Interdisciplinarios en Ciencias Sociales, 8(3), 454-474. https://ojs.urbe.edu/index.php/telos/article/view/2703
Piñeiro-Chousa, J., López-Cabarcos, M. Á., Romero-Castro, N. M., y Pérez-Pico, A. M. (2020). Innovation, entrepreneurship and knowledge in the business scientific field: Mapping the research front. Journal of Business Research, 115, 475-485. https://doi.org/10.1016/j.jbusres.2019.11.045
Reig, J., y González, J. F. (2002). Modelo borroso de control de gestión de materiales.
Spanish Journal of Finance and Accounting/ Revista Española de Financiación y Contabilidad, XXXI(12). 431-459. https://doi.org/10.1080/02102412.2002.10779453
Rhee, J., Park, T., y Lee, D. H. (2010). Drivers of innovativeness and performance for innovative SMEs in South Korea: Mediation of learning orientation. Technovation, 30(1), 65-75. https://doi.org/10.1016/j.technovation.2009.04.008
Rico, M. A., y Tinto, J. (2008). Matemática borrosa: Algunas aplicaciones en las ciencias económicas, administrativas y contables. Contaduría Universidad de Antioquia, (52) 199-214. https://doi.org/10.17533/udea.rc.2169
Rico, M. A., y Tinto, J. (2010). Herramientas con base en subconjuntos borrosos. Propuesta procedimental para aplicar expertizaje y recuperar efectos olvidados en la información contable. Actualidad Contable Faces, 13(21), 127-146. http://erevistas.saber.ula.ve/index.php/actualidadcontable/article/view/7273
Ritter, T., y Pedersen, C. L. (2020). Digitization capability and the digitalization of business models in business-to-business firms: Past, present, and future. Industrial Marketing Management, 86, 180-190. https://doi.org/10.1016/j.indmarman.2019.11.019
Rosenbusch, N., Brinckmann, J., y Bausch, A. (2011). Is innovation always beneficial? A meta-analysis of the relationship between innovation and performance in SMEs. Journal of Business Venturing, 26(4), 441-457. https://doi.org/10.1016/j.jbusvent.2009.12.002
Schultze, U., y Leidner, D. E. (2002). Studying knowledge management in information systems research: Discourses and theoretical assumptions. MIS Quarterly, 26(3), 213-242. https://doi.org/10.2307/4132331
Shepherd, D. A. (2003). Learning from business failure: Propositions of grief recovery for the self-employed. The Academy of Management Review, 28(2), 318-328. https://doi.org/10.5465/amr.2003.9416377
Singh, S., Olugu, E. U., Musa, S. N., y Mahat, A. B. (2018). Fuzzy-based sustainability evaluation method for manufacturing SMEs using balanced scorecard framework. Journal of Intelligent Manufacturing, 29, 1-18. https://doi.org/10.1007/s10845-015-1081-1
Singh, S., Olugu, E. U., y Fallahpour, A. (2014). Fuzzy-based sustainable manufacturing assessment model for SMEs. Clean Technologies and Environmental Policy, 16, 847-860. https://doi.org/10.1007/s10098-013-0676-5
Snihur, Y., y Tarzijan, J. (2018). Managing complexity in a multi-business-model organization. Long Range Planning, 51(1), 50-63. https://doi.org/10.1016/j.lrp.2017.06.010
Sun, H., Qiu, C., Lu, L., Gao, X., Chen, J., y Yang, H. (2020). Wind turbine power modelling and optimization using artificial neural network with wind field experimental data. Applied Energy, 280, 115880. https://doi.org/10.1016/j.apenergy.2020.115880
Tafarroj, M. M., Mahian, O., Kasaeian, A., Sakamatapan, K., Dalkilic, A. S., y Wongwises, S. (2017). Artificial neural network modeling of nanofluid flow in a microchannel heat sink using experimental data. International Communications in Heat and Mass Transfer, 86, 25-31. https://doi.org/10.1016/j.icheatmasstransfer.2017.05.020
Tino, P., Benuskova, L., y Sperduti, A. (2015). Artificial neural network models. In J. Kacprzyk y W. Pedrycz (Eds.), Springer Handbook of Computational Intelligence (pp. 455-471). Springer. https://doi.org/10.1007/978-3-662-43505-2_27
Uhlaner, L. M., Van Stel, A., Duplat, V., y Zhou, H. (2013). Disentangling the effects of organizational capabilities, innovation and firm size on SME sales growth. Small Business Economics, 41, 581-607. https://doi.org/10.1007/s11187-012-9455-7
Vanchurin, V. (2020). The world as a neural network. Entropy, 22(11), 1210. https://doi.org/10.3390/e22111210
Vidyadhar, R., Sudeep, R., Vinodh, S., y Antony, J. (2016). Application of fuzzy logic for leanness assessment in SMEs: A case study. Journal of Engineering, Design and Technology, 14(1), 78-103. https://doi.org/10.1108/JEDT-05-2014-0029
Vehner, E., y Nikulcha, V. (2023). Features of the use of artificial neural networks in digital marketing. Herald of Khmelnytskyi National University. Economic Sciences, 316, 312-318. https://doi.org/10.31891/2307-5740-2023-316-2-49
Wenzel, M., Stanske, S., y Lieberman, M. B. (2020). Strategic responses to crisis. Strategic Management Journal, 42(2), 3161. https://doi.org/10.1002/smj.3161
Yadav, H. B., Kumar, S., Kumar, Y., y Yadav, D. K. (2018). A fuzzy logic based approach for decision making. Journal of Intelligent & Fuzzy Systems, 35(2), 1531-1539. https://doi.org/10.3233/JIFS-169693
Yu, J., Yang, L., Xu, N., Yang, J., y Huang, T. (2018). Slimmable neural networks. arXiv:1812.08928. https://doi.org/10.48550/arXiv.1812.08928
Zadeh, L. A. (1965). “Fuzzy Sets”. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
Zhou, H., Uhlaner, L. M., y Jungst, M. (2023). Knowledge management practices and innovation: A deliberate innovation management model for SMEs. Journal of Small Business Management, 61(4), 2126-2159. https://doi.org/10.1080/00472778.2021.1888383

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.