Artificial intelligence applied to the management of dyslexia cases in university settings: A systematic review

Palabras clave: Dyslexia, artificial intelligence, education, university students, systematic review

Resumen

Dyslexia is a learning difficulty that affects reading and writing and has been studied in search of novel tools for detection and treatment. This article analyzes the applicability of Artificial Intelligence to the management of dyslexia cases in university settings, through a systematic review focused on the contributions of scientific literature on assessment/diagnosis and intervention processes. Through searches in Scopus and Web of Science, empirical studies were selected considering the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Protocols method. The results show that Artificial Intelligence is effective in the detection of dyslexia through eye movement analysis and neuroimaging, allowing early diagnosis. However, research has mainly focused on assessment and diagnosis, while its application in interventions requires further study. In conclusion, Artificial Intelligence has the potential to improve accessibility and personalization in the treatment of dyslexia, contributing to the transformation of university educational processes in students suffering from this condition.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Freddy Marín-González

Doctor en Ciencias Humanas. Postdoctorado en Ciencias Humanas. Magíster en Educación. Especialista en Planificación y Administración Educativa. Licenciado en Educación mención Biología y Química. Docente Investigador del Departamento de Humanidades en la Universidad de la Costa, Barranquilla, Atlántico, Colombia. E-mail: fmarin1@cuc.edu.co ORCID: https://orcid.org/0000-0002-3935-8806 Autor de Correspondencia.

Gabriela Cristina Cuba-Romero

Psicólogo en Formación del Programa de Psicología en la Universidad de la Costa, Barranquilla, Atlántico, Colombia. E-mail: gcuba@cuc.edu.co ORCID: https://orcid.org/0009-0006-4259-6457

Michell Andrea Larios-Ariza

Psicólogo en Formación del Programa de Psicología en la Universidad de la Costa, Barranquilla, Atlántico, Colombia. E-mail: mlarios@cuc.edu.co ORCID: https://orcid.org/0009-0003-2907-816X

Citas

Ahmad, N., Rehman, M. B., El Hassan, H. M., Ahmad, I., & Rashid, M. (2022). An efficient machine learning-based feature optimization model for the detection of dyslexia. Computational Intelligence and Neuroscience, 8491753. https://doi.org/10.1155/2022/8491753

Aishwarya, G. L., Satyanarayana, V., Singh, M. K., & Kumar, S. (2022). Contemporary evolution of artificial intelligence (AI): An overview and applications. Advanced Production and Industrial Engineering, 130-136. https://doi.org/10.3233/ATDE220731

Al-Dokhny, A. A., Bukhamseen, A. M., & Drwish, A. M. (2022). Influence of assistive technology applications on dyslexic students: The case of Saudi Arabia during the COVID-19 pandemic. Education and Information Technologies, 27(9), 12213-12249. https://doi.org/10.1007/s10639-022-11090-9

Alsobhi, A. Y., & Alyoubi, K. H. (2019). Adaptation algorithms for selecting personalised learning experience based on learning style and dyslexia type. Data Technologies and Applications, 53(2), 189-200. https://doi.org/10.1108/DTA-10-2018-0092

Alsswey, A., El-Qirem, F. A., & Al Tarawneh, M. H. (2021). Dyslexic Arabic students in the Arab countries: A systematic review of assistive technology progress and recommendations. International Journal of Early Childhood Special Education, 13(1), 114-120. https://www.int-jecse.net/media/article_pdfs/114-120.pdf

Amador, G., Clouder, L., Karakus, M., Uribe, I., Cinotti, A., Ferreyra, M. V., & Rojo, P. (2021). Neurodiversidad en la Educación Superior: La experiencia de los estudiantes. Revista de la Educación Superior, 50(200), 129-151. http://resu.anuies.mx/ojs/index.php/resu/article/view/1893

American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders: DSM-5. Editorial Médica Panamericana. https://doi.org/10.1176/appi.books.9780890425596

Appadurai, J. P., & Bhargavi, R. (2021). Eye movement feature set and predictive model for dyslexia: Feature set and predictive model for dyslexia. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 15(4), 1-22. https://doi.org/10.4018/IJCINI.20211001.oa28

Ausín, V., Rodríguez, S., Delgado, V., & Bogdan, R. (2023). Evaluación de una APP de realidad aumentada en niños/as con dislexia: Estudio piloto. Pixel-Bit. Revista de Medios y Educación, 66, 87-111. https://doi.org/10.12795/pixelbit.95632

Barua, P. D., Vicnesh, J., Gururajan, R., Oh, S. L., Palmer, E., Azizan, M. M., Kadri, N. A., & Acharya, U. R. (2022). Artificial intelligence enabled personalised assistive tools to enhance education of children with neurodevelopmental disorders-A review. International Journal of Environmental Research and Public Health, 19(3), 1192. https://doi.org/10.3390/ijerph19031192

Beltrán, J. A., & Pérez, L. (2011). Más de un siglo de psicología educativa. Valoración general y perspectivas de futuro. Papeles del Psicólogo, 32(3), 204-231. https://www.papelesdelpsicologo.es/pdf/1981.pdf

Beyer, M., Liebig, J., Sylvester, T., Braun, M., Heekeren, H. R., Froehlich, E., Jacobs, A. M., & Ziegler, J. C. (2022). Structural gray matter features and behavioral preliterate skills predict future literacy - A machine learning approach. Frontiers in Neuroscience, 16, 920150. https://doi.org/10.3389/fnins.2022.920150

Bravo, R. N., Vargas, K. V., Manzano, M., & Lazo, C. S. (2023). Alfabetismo en el Siglo XXI: Análisis de competencias de lectura y escritura en Ecuador. Revista de Ciencias Sociales (Ve), XXIX(E-8), 183-196. https://doi.org/10.31876/rcs.v29i.40946

British Dyslexia Association (2025). About dyslexia. British Dyslexia Association. https://www.bdadyslexia.org.uk/dyslexia/about-dyslexia/what-is-dyslexia

Burgos-Mendieta, D. J., Castro-Castillo, G. J., Mendoza-Carrera, J. E., & Ibarra-Freire, M. C. (2024). Hábitos de lectoescritura en entornos educativos digitales en Ecuador. Revista de Ciencias Sociales (Ve), XXX(3), 349-364. https://doi.org/10.31876/rcs.v30i3.42670

Cancer, A., & Antonietti, A. (2022). Music-based and auditory-based interventions for reading difficulties: A literature review. Heliyon, 8(4), e09293. https://doi.org/10.1016/j.heliyon.2022.e09293

Carrasco, C., Balytar, M. J., Bastidas, N., López, J., Morales, M., & López, V. (2019). Identidad profesional de una psicóloga educacional: Un estudio de caso en Chile. Pensando Psicología, 15(25), 1-27. https://doi.org/10.16925/2382-3984.2019.01.01

Carrillo, M. S., Alegría, J., Miranda, P., & Sánchez, N. (2011). Evaluación de la dislexia en la escuela primaria: Prevalencia en español. Escritos de Psicología, 4(2), 35-44. https://doi.org/10.24310/espsiescpsi.v4i2.13317

Cavalli, E., Brèthes, H., Lefèvre, E., El Ahmadi, A., Duncan, L. G., Bianco, M., Melmi, J.-B., Denis-Noël, A., & Colé, P. (2024). Screening for dyslexia in university students: A standardized procedure based on conditional inference trees. Archives of Clinical Neuropsychology, 39(5), 557-574. https://doi.org/10.1093/arclin/acad103

Chalco-Torres, L. E., Galarza-Mora, W. G., & Gálvez-Palomeque, P. A. (2023). Optimizando la enseñanza en educación superior: Una revisión de estrategias para la inclusión de estudiantes con necesidades educativas especiales. MQRInvestigar, 7(3), 4300-4316. https://doi.org/10.56048/MQR20225.7.3.2023.4300-4316

Christodoulides, P., Miltiadous, A., Tzimourta, K. D., Peschos, D., Ntritsos, G., Zakopoulou, V., Giannakeas, N., Astrakas, L. G., Tsipouras, M. G., Tsamis, K. I., Glavas, E., & Tzallas, A. T. (2022). Classification of EEG signals from young adults with dyslexia combining a Brain Computer Interface device and an Interactive Linguistic Software Tool. Biomedical Signal Processing and Control, 76, 103646. https://doi.org/10.1016/j.bspc.2022.103646

Christoforou, C., Theodorou, M., Fella, A., & Papadopoulos, T. C. (2023a). RAN-related neural-congruency: A machine learning approach toward the study of the neural underpinnings of naming speed. Frontiers in Psychology, 14, 1076501. https://doi.org/10.3389/fpsyg.2023.1076501

Christoforou, C., Theodorou, M., Fella, A., & Papadopoulos, T. C. (2023b). Phonological ability and neural congruency: Phonological loop or more? Clinical Neurophysiology, 156, 228-241. https://doi.org/10.1016/j.clinph.2023.10.015

Corona-González, C. E., Ramos-Flores, M., Alonso-Valerdi, L. M., Ibarra-Zarate, D. I., & Issa-García, V. (2024). Psychophysiological evaluation of the Smartick method in children with reading and mathematical difficulties. Frontiers in Human Neuroscience, 18, 1287544. https://doi.org/10.3389/fnhum.2024.1287544

Cui, Z., Xia, Z., Su, M., Shu, H., & Gong, G. (2016). Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach. Human Brain Mapping, 37(4), 1443-1458. https://doi.org/10.1002/hbm.23112

Diraä, N., Engelen, J., Ghesquière, P., & Neyens, K. (November 9-10, 2009). The use of ICT to support students with dyslexia. In A. Holzinger & K. Miesenberger (Eds.), HCI and Usability for e-Inclusion: 5th Symposium of the Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Computer Society, USAB 2009, (pp. 457-462), Linz, Austria. Springer Berlin Heidelberg.

Doroudi, S. (2023). The intertwined histories of artificial intelligence and education. International Journal of Artificial Intelligence in Education, 33(4), 885-928. https://doi.org/10.1007/s40593-022-00313-2

Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021

Dutt, S., Ahuja, N. J., & Kumar, M. (2022). An intelligent tutoring system architecture based on fuzzy neural network (FNN) for special education of learning disabled learners. Education and Information Technologies, 27(2), 2613-2633. https://doi.org/10.1007/s10639-021-10713-x

El Hmimdi, A. E., Kapoula, Z., & Garnot, V. S. F. (2024). Deep learning-based detection of learning disorders on a large scale dataset of eye movement records. BioMedInformatics, 4(1), 519-541. https://doi.org/10.3390/biomedinformatics4010029

El Hmimdi, A. E., Ward, L. M., Palpanas, T., Garnot, V. S. F., & Kapoula, Z. (2022). Predicting dyslexia in adolescents from eye movements during free painting viewing. Brain Sciences, 12(8), 1031. https://doi.org/10.3390/brainsci12081031

El Hmimdi, A. E., Ward, L. M., Palpanas, T., & Kapoula, Z. (2021). Predicting dyslexia and reading speed in adolescents from eye movements in reading and non-reading tasks: A Machine Learning approach. Brain Sciences, 11(10), 1337. https://doi.org/10.3390/brainsci11101337

Erbeli, F., He, K., Cheek, C., Rice, M., & Qian, X. (2023). Exploring the machine learning paradigm in determining risk for reading disability. Scientific Studies of Reading, 27(1), 5-20. https://doi.org/10.1080/10888438.2022.2115914

Formoso, M. A., Ortiz, A., Martínez-Murcia, F. J., Gallego, N., & Luque, J. L. (2021). Detecting phase-synchrony connectivity anomalies in EEG signals. Application to dyslexia diagnosis. Sensors, 21(21), 7061. https://doi.org/10.3390/s21217061

García, Y., García, B., Saralegui, I., & Fernandez-Ruanova, B. (2014). Automatic classification of dyslexic children by applying machine learning to fMRI images. Bio-Medical Materials and Engineering, 24(6), 2995-3002. https://doi.org/10.3233/BME-141120

Gracheva, M. A., & Shalileh, S. (2023). Dyslexia diagnostics based on eye movements and artificial intelligence methods: A review. Clinical Psychology and Special Education, 12(3), 1-29. https://doi.org/10.17759/cpse.2023120301

Griffin, E., & Pollak, D. (2009). Student experiences of neurodiversity in higher education: Insights from the BRAINHE project. Dyslexia, 15(1), 23-41. https://doi.org/10.1002/dys.383

Guaña-Moya, J., Arteaga-Alcívar, Y., Ilbay-Guaña, E., & Morales, M. B. (2023). Uso de las Tecnologías de la Información y Comunicación para mejorar el aprendizaje de los niños con dislexia. RECIMUNDO, 7(1), 507-514. https://doi.org/10.26820/recimundo/7.(1).enero.2023.507-514

Gutiérrez-Fresneda, R., Díez, A., Pozo-Rico, T., Ramos-Fernández, E., & Verdú-Llorca, V. (2022). Saberes sobre la dislexia y su importancia en el aprendizaje por parte de los estudiantes de mención en pedagogía terapéutica. En R. Satorre (Ed.), El profesorado, eje fundamental de la transformación de la docencia universitaria (pp. 5-14). Octaedro.

Haiech, J. (2020). Parcourir l’histoire de l’intelligence artificielle, pour mieux la définir et la comprendre. Médecine Sciences, 36(10), 919-923. https://doi.org/10.1051/medsci/2020145

Helland, T. (2022). Trends in dyslexia research during the period 1950 to 2020-theories, definitions, and publications. Brain Sciences, 12(10), 1323. https://doi.org/10.3390/brainsci12101323

Johnston, R. B. (2019). Poor education predicts poor health—A challenge unmet by American medicine. National Academy of Medicine.

Jothi, A., Bhargavi, R., & Deepa, B. V. (2023). Prediction of dyslexia severity levels from fixation and saccadic eye movement using machine learning. Biomedical Signal Processing and Control, 79(Part-1), 104094. https://doi.org/10.1016/j.bspc.2022.104094

Jothi, A., Bhargavi, R., & Ramesh, R. (2018). Prediction of dyslexia using support vector machine in distributed environment. International Journal of Engineering & Technology, 7(4), 2795. https://doi.org/10.14419/ijet.v7i4.17222

Jothi, A., & Bhargavi, R. (2019). Prediction of dyslexia from eye movements using machine learning. IETE Journal of Research, 68(2), 814-823. https://doi.org/10.1080/03772063.2019.1622461

Kaisar, S., & Chowdhury, A. (2022). Integrating oversampling and ensemble-based machine learning techniques for an imbalanced dataset in dyslexia screening tests. ICT Express, 8(4), 563-568. https://doi.org/10.1016/j.icte.2022.02.011

Kothapalli, P. K. V., Rathikarani, V., & Nookala, G. K. M. (2023). A constructive model for dyslexia and ADHD prediction using feature learning and boosting approaches. International Journal of Intelligent Systems and Applications in Engineering, 12(2s), 639-649. https://www.ijisae.org/index.php/IJISAE/article/view/3685

Larco, J. M. (2023). Retraso en el desarrollo del lenguaje en niños de nivel inicial en Ecuador. Revista de Ciencias Sociales (Ve), XXIX(E-8), 197-210. https://doi.org/10.31876/rcs.v29i.40947

Liu, F., Wang, H., Zhao, X., & Yu, D. (2024). Small-world properties of eye-movement time series assisted in identifying children at high risk for dyslexia. Biomedical Signal Processing and Control, 93, 106148. https://doi.org/10.1016/j.bspc.2024.106148

Lohvansuu, K., Torppa, M., Ahonen, T., Eklund, K., Hämäläinen, J. A., Leppänen, P. H. T., & Lyytinen, H. (2021). Unveiling the mysteries of dyslexia-lessons learned from the prospective Jyväskylä Longitudinal Study of dyslexia. Brain Sciences, 11(4), 427. https://doi.org/10.3390/brainsci11040427

Macas-Macas, A. D. R., & Guevara-Vizcaíno, C. F. (2020). Uso de herramientas digitales para mejorar la dislexia en estudiantes de Educación Básica. Dominio de las Ciencias, 6(3), 197-218. https://dominiodelasciencias.com/ojs/index.php/es/article/view/1281

Marín, F. (2020). Editorial. Resignificar la praxis educativa en tiempos de incertidumbre: Un desafío para las organizaciones sociales. Revista de Ciencias Sociales (Ve), XXVI(E-2), 9-13. https://doi.org/10.31876/rcs.v26i0.34140

Marín-González, F., Grimaldo-Guerrero, J., Mendoza-Becerra, M., & Senior-Naveda, A. (2020). Mapeo del conocimiento para la enseñanza interdisciplinaria en ingeniería. Formación Universitaria, 13(6), 85-94. http://dx.doi.org/10.4067/S0718-50062020000600085

Martínez-Murcia, F. J., Ortiz, A., Gorriz, J. M., Ramirez, J., Lopez-Abarejo, P. J., Lopez-Zamora, M., & Luque, J. L. (2020). EEG connectivity analysis using denoising autoencoders for the detection of dyslexia. International Journal of Neural Systems, 30(7), 2050037. https://doi.org/10.1142/S0129065720500379

Mat, N. I., Abdul, A. W., & Kamaruddin, N. (2020). Detecting learning disabilities based on neuro-physiological interface of affect (NPIoA). Indonesian Journal of Electrical Engineering and Computer Science, 19(1), 163-170. http://doi.org/10.11591/ijeecs.v19.i1.pp164-171

Modak, M., Ghotane, K., Siddhanth, V., Kelkar, N., Iyer, A., & Prachi, G. (2019). Detection of dyslexia using eye tracking measures. International Journal of Innovative Technology and Exploring Engineering, 8(9S2), 58-61. https://doi.org/10.35940/ijitee.I1011.0789S219

Morciano, G., Alcalde, J. M., Zingoni, A., Yeguas, E., Taborri, J., & Calabrò, G. (2024). Use of recommendation models to provide support to dyslexic students. Expert Systems with Applications, 249(Part-C), 123738. https://doi.org/10.1016/j.eswa.2024.123738

Mpia, D., Ojo, S., & Osunmakinde, I. O. (2013). An intelligent integrative assistive system for dyslexic learners. Journal of Assistive Technologies, 7(3), 172-187. https://doi.org/10.1108/JAT-11-2012-0036

Nandhini, K., & Balasundaram, S. R. (2013). Improving readability through extractive summarization for learners with reading difficulties. Egyptian Informatics Journal, 14(3), 195-204. https://doi.org/10.1016/j.eij.2013.09.001

Nerušil, B., Polec, J., Škunda, J., & Kačur, J. (2021). Eye tracking based dyslexia detection using a holistic approach. Scientific Reports, 11(1), 15687. https://doi.org/10.1038/s41598-021-95275-1

Nilsson, M., Öqvist, G., Ygge, J., Pansell, T., Rydberg, A., & Jacobson, C. (2016). Screening for dyslexia using eye tracking during reading. PloS One, 11(12), e0165508. https://doi.org/10.1371/journal.pone.0165508

Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., …McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. The BMJ, 372, 160. https://doi.org/10.1136/BMJ.N160

Palacios, A. M., Sánchez, L., & Couso, I. (2010). Diagnosis of dyslexia with low quality data with genetic fuzzy systems. International Journal of Approximate Reasoning, 51(8), 993-1009. https://doi.org/10.1016/j.ijar.2010.07.008

Parmar, S., & Paunwala, C. (2023). Early detection of dyslexia based on EEG with novel predictor extraction and selection. Discover Artificial Intelligence, 3, 33. https://doi.org/10.1007/s44163-023-00082-4

Pedroli, E., Padula, P., Guala, A., Meardi, M. T., Riva, G., & Albani, G. (2017). A psychometric tool for a virtual reality rehabilitation approach for dyslexia. Computational and Mathematical Methods in Medicine, 7048676. https://doi.org/10.1155/2017/7048676

Peñalver-Higuera, M. J., Guerra-Castellanos, Y. B., Rodríguez, L. R., & Lopez, R. D. P. (2024). Transformando la educación con Inteligencia Artificial: Hacia un aprendizaje personalizado en la Era 4.0. Revista de Ciencias Sociales (Ve), XXX(4), 416-430. https://doi.org/10.31876/rcs.v30i4.43040

Perera, H., Shiratuddin, M. F., Wong, K. W., & Fullarton, K. (2018). EEG signal analysis of writing and typing between adults with dyslexia and normal controls. International Journal of Interactive Multimedia and Artificial Intelligence, 5(1), 62-67. https://doi.org/10.9781/ijimai.2018.04.005

Platas-García, A., Sánchez, M., & Mayett, R. L. (2023). Dislexia y autoeficacia académica en estudiantes universitarios mexicanos. Cuestiones Pedagógicas, 2(32), 105-120. https://doi.org/10.12795/CP.2023.i32.v2.06

Quisnancela, A. M. (2022). Gamificación como estrategia didáctica para estudiantes con dislexia de EGB superior, en la Escuela de Educación Básica “Fe y Alegría” de la Ciudad de Riobamba [Tesis de maestría, Universidad Nacional de Chimborazo]. http://dspace.unach.edu.ec/bitstream/51000/9783/1/Quisnancela%20Q.%2C%20Ana%20%282022%29%20Gamificacion%20como%20estrategias%20didacticas%20para%20estudiantes%20con%20dislexia.pdf

Rodríguez-Cano, S., Delgado-Benito, V., Ausín-Villaverde, V., & Muñoz-Martín, L. (2021). Design of a virtual reality software to promote the learning of students with dyslexia. Sustainability, 13(15), 8425. https://doi.org/10.3390/su13158425

Rubio, J. (2022). Evaluación de la Calidad de Materiales Didácticos Digitales para alumnado con Dislexia en Educación Primaria [Tesis de pregrado, Universidad de Oviedo]. https://digibuo.uniovi.es/dspace/handle/10651/64313

Sanfilippo, J., Ness, M., Petscher, Y., Rappaport, L., Zuckerman, B., & Gaab, N. (2020). Reintroducing dyslexia: Early identification and implications for pediatric practice. Pediatrics, 146(1), e20193046. https://doi.org/10.1542/peds.2019-3046

Sekhar, S., Chandrashekar, S., & Siddesh, G. M. (2023). Eye movement interpretation for detecting dyslexia using machine learning techniques. International Journal of Computing and Digital Systems, 13(1), 787-794. http://dx.doi.org/10.12785/ijcds/130162

Serna, M. A. (2023). Dislexia en la etapa universitaria: Una mirada desde la lingüística clínica. Revista Médica de Risaralda, 29(1), 9-18. https://doi.org/10.22517/25395203.25236

Seshadri, N. P. G., Agrawal, S., Singh, B. K., Geethanjali, B., Mahesh, V., & Pachori, R. B. (2023). EEG based classification of children with learning disabilities using shallow and deep neural network. Biomedical Signal Processing and Control, 82, 104553. https://doi.org/10.1016/j.bspc.2022.104553

Simón, Á. (18-20 de agosto de 2020). Acompañamiento a un estudiante con dislexia, de la Tecnicatura Universitaria en Programación de la FRGP. Expoingeniería 1era Feria Virtual de Proyectos Tecnológicos, Buenos Aires, Argentina.

Suárez-Rojas, M.-S., Hernández-Ballestas, M.-A., & Orozco-Gutiérrez, M. (2024). Metacomprensión y desarrollo cognitivo en la autorregulación del aprendizaje del adolescente. Cultura Educación y Sociedad, 15(1), e0424675. https://doi.org/10.17981/cultedusoc.15.1.2024.4675

Tamboer, P., Vorst, H. C. M., Ghebreab, S., & Scholte, H. S. (2016). Machine learning and dyslexia: Classification of individual structural neuro-imaging scans of students with and without dyslexia. NeuroImage. Clinical, 11, 508-514. https://doi.org/10.1016/j.nicl.2016.03.014

Tomaz, L., Bianchini, N., Ruiz, D. D., Meneguzzi, F., & Buchweitz, A. (2021). Visual explanation for identification of the brain bases for developmental dyslexia on fMRI data. Frontiers in Computational Neuroscience, 15, 594659. https://doi.org/10.3389/fncom.2021.594659

Vajs, I., Ković, V., Papić, T., Savić, A. M., & Janković, M. M. (2022). Spatiotemporal eye-tracking feature set for improved recognition of dyslexic reading patterns in children. Sensors, 22(13), 4900. https://doi.org/10.3390/s22134900

Vajs, I., Papić, T., Ković, V., Savić, A. M., & Janković, M. M. (2023). Accessible dyslexia detection with real-time reading feedback through robust interpretable eye-tracking features. Brain Sciences, 13(3), 405. https://doi.org/10.3390/brainsci13030405

Vega-Rodríguez, L. Y., & Botero-Suaza, L. E. (2021). Formación profesional inmersa en la transformación digital con el fin de mejorar la calidad en la educación. Cultura Educación Sociedad, 12(1), 37-46. https://doi.org/10.17981/cultedusoc.12.1.2021.03

Vezzoli, Y., Folgieri, R., Vanutelli, M. E., & Lucchiari, C. (2018). How many tests do you need to diagnose Learning Disabilities? Neuropsychological Trends, (23), 67-81. https://doi.org/10.7358/neur-2018-023-lucc

Wang, M., Muthu, B., & Sivaparthipan, C. B. (2022). Smart assistance to dyslexia students using artificial intelligence based augmentative alternative communication. International Journal of Speech Technology, 25(2), 343-353. https://doi.org/10.1007/s10772-021-09921-0

Wolf, M., Gotlieb, R. J. M., Kim, S. A., Pedroza, V., Rhinehart, L. V., Gorno, M. L., & Sears, S. (2024). Towards a dynamic, comprehensive conceptualization of dyslexia. Annals of Dyslexia, 74, 303-324. https://doi.org/10.1007/s11881-023-00297-1

World Health Organization - WHO (2018). Social determinants of health. WHO. https://www.who.int/health-topics/social-determinants-of-health#tab=tab_1

Yang, H. (2022). Effect of story structure instruction based on visual analysis on reading comprehension intervention for dyslexic students. Computational Intelligence and Neuroscience, 9479709. https://doi.org/10.1155/2022/9479709

Yong, C., Dekuan, X., & Xueqiang, L. (2019). Automatically grading text difficulty with multiple features. Data Analysis and Knowledge Discovery, 3(7), 103-112. https://doi.org/10.11925/infotech.2096-3467.2018.1089

Zabkar, J., Urankar, T., Javornik, K., & Košak, M. (2023). Identifying reading fluency in pupils with and without dyslexia using a machine learning model on texts assessed with a readability application. Center for Educational Policy Studies Journal, 13(4), 233-256. https://doi.org/10.26529/cepsj.1367

Zingoni, A., Taborri, J., Panetti, V., Bonechi, S., Aparicio-Martínez, P., Pinzi, S., & Calabrò, G. (2021). Investigating issues and needs of dyslexic students at university: Proof of concept of an artificial intelligence and virtual reality-based supporting platform and preliminary results. Applied Sciences, 11(10), 4624. https://doi.org/10.3390/app11104624

Zuppardo, L., Rodríguez, A., Pirrone, C., & Serrano, F. (2020). Las repercusiones de la dislexia en la autoestima, en el comportamiento socioemocional y en la ansiedad en escolares. Psicología Educativa, 26(2), 175-183. https://doi.org/10.5093/psed2020a4
Publicado
2025-08-26
Cómo citar
Marín-González, F., Cuba-Romero, G. C., & Larios-Ariza, M. A. (2025). Artificial intelligence applied to the management of dyslexia cases in university settings: A systematic review. Revista De Ciencias Sociales, 31(3), 38-56. https://doi.org/10.31876/rcs.v31i3.44268
Sección
Artículo en Inglés

Artículos más leídos del mismo autor/a