Artificial intelligence applied to the management of dyslexia cases in university settings: A systematic review
Abstract
Dyslexia is a learning difficulty that affects reading and writing and has been studied in search of novel tools for detection and treatment. This article analyzes the applicability of Artificial Intelligence to the management of dyslexia cases in university settings, through a systematic review focused on the contributions of scientific literature on assessment/diagnosis and intervention processes. Through searches in Scopus and Web of Science, empirical studies were selected considering the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Protocols method. The results show that Artificial Intelligence is effective in the detection of dyslexia through eye movement analysis and neuroimaging, allowing early diagnosis. However, research has mainly focused on assessment and diagnosis, while its application in interventions requires further study. In conclusion, Artificial Intelligence has the potential to improve accessibility and personalization in the treatment of dyslexia, contributing to the transformation of university educational processes in students suffering from this condition.
Downloads
References
Aishwarya, G. L., Satyanarayana, V., Singh, M. K., & Kumar, S. (2022). Contemporary evolution of artificial intelligence (AI): An overview and applications. Advanced Production and Industrial Engineering, 130-136. https://doi.org/10.3233/ATDE220731
Al-Dokhny, A. A., Bukhamseen, A. M., & Drwish, A. M. (2022). Influence of assistive technology applications on dyslexic students: The case of Saudi Arabia during the COVID-19 pandemic. Education and Information Technologies, 27(9), 12213-12249. https://doi.org/10.1007/s10639-022-11090-9
Alsobhi, A. Y., & Alyoubi, K. H. (2019). Adaptation algorithms for selecting personalised learning experience based on learning style and dyslexia type. Data Technologies and Applications, 53(2), 189-200. https://doi.org/10.1108/DTA-10-2018-0092
Alsswey, A., El-Qirem, F. A., & Al Tarawneh, M. H. (2021). Dyslexic Arabic students in the Arab countries: A systematic review of assistive technology progress and recommendations. International Journal of Early Childhood Special Education, 13(1), 114-120. https://www.int-jecse.net/media/article_pdfs/114-120.pdf
Amador, G., Clouder, L., Karakus, M., Uribe, I., Cinotti, A., Ferreyra, M. V., & Rojo, P. (2021). Neurodiversidad en la Educación Superior: La experiencia de los estudiantes. Revista de la Educación Superior, 50(200), 129-151. http://resu.anuies.mx/ojs/index.php/resu/article/view/1893
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders: DSM-5. Editorial Médica Panamericana. https://doi.org/10.1176/appi.books.9780890425596
Appadurai, J. P., & Bhargavi, R. (2021). Eye movement feature set and predictive model for dyslexia: Feature set and predictive model for dyslexia. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 15(4), 1-22. https://doi.org/10.4018/IJCINI.20211001.oa28
Ausín, V., Rodríguez, S., Delgado, V., & Bogdan, R. (2023). Evaluación de una APP de realidad aumentada en niños/as con dislexia: Estudio piloto. Pixel-Bit. Revista de Medios y Educación, 66, 87-111. https://doi.org/10.12795/pixelbit.95632
Barua, P. D., Vicnesh, J., Gururajan, R., Oh, S. L., Palmer, E., Azizan, M. M., Kadri, N. A., & Acharya, U. R. (2022). Artificial intelligence enabled personalised assistive tools to enhance education of children with neurodevelopmental disorders-A review. International Journal of Environmental Research and Public Health, 19(3), 1192. https://doi.org/10.3390/ijerph19031192
Beltrán, J. A., & Pérez, L. (2011). Más de un siglo de psicología educativa. Valoración general y perspectivas de futuro. Papeles del Psicólogo, 32(3), 204-231. https://www.papelesdelpsicologo.es/pdf/1981.pdf
Beyer, M., Liebig, J., Sylvester, T., Braun, M., Heekeren, H. R., Froehlich, E., Jacobs, A. M., & Ziegler, J. C. (2022). Structural gray matter features and behavioral preliterate skills predict future literacy - A machine learning approach. Frontiers in Neuroscience, 16, 920150. https://doi.org/10.3389/fnins.2022.920150
Bravo, R. N., Vargas, K. V., Manzano, M., & Lazo, C. S. (2023). Alfabetismo en el Siglo XXI: Análisis de competencias de lectura y escritura en Ecuador. Revista de Ciencias Sociales (Ve), XXIX(E-8), 183-196. https://doi.org/10.31876/rcs.v29i.40946
British Dyslexia Association (2025). About dyslexia. British Dyslexia Association. https://www.bdadyslexia.org.uk/dyslexia/about-dyslexia/what-is-dyslexia
Burgos-Mendieta, D. J., Castro-Castillo, G. J., Mendoza-Carrera, J. E., & Ibarra-Freire, M. C. (2024). Hábitos de lectoescritura en entornos educativos digitales en Ecuador. Revista de Ciencias Sociales (Ve), XXX(3), 349-364. https://doi.org/10.31876/rcs.v30i3.42670
Cancer, A., & Antonietti, A. (2022). Music-based and auditory-based interventions for reading difficulties: A literature review. Heliyon, 8(4), e09293. https://doi.org/10.1016/j.heliyon.2022.e09293
Carrasco, C., Balytar, M. J., Bastidas, N., López, J., Morales, M., & López, V. (2019). Identidad profesional de una psicóloga educacional: Un estudio de caso en Chile. Pensando Psicología, 15(25), 1-27. https://doi.org/10.16925/2382-3984.2019.01.01
Carrillo, M. S., Alegría, J., Miranda, P., & Sánchez, N. (2011). Evaluación de la dislexia en la escuela primaria: Prevalencia en español. Escritos de Psicología, 4(2), 35-44. https://doi.org/10.24310/espsiescpsi.v4i2.13317
Cavalli, E., Brèthes, H., Lefèvre, E., El Ahmadi, A., Duncan, L. G., Bianco, M., Melmi, J.-B., Denis-Noël, A., & Colé, P. (2024). Screening for dyslexia in university students: A standardized procedure based on conditional inference trees. Archives of Clinical Neuropsychology, 39(5), 557-574. https://doi.org/10.1093/arclin/acad103
Chalco-Torres, L. E., Galarza-Mora, W. G., & Gálvez-Palomeque, P. A. (2023). Optimizando la enseñanza en educación superior: Una revisión de estrategias para la inclusión de estudiantes con necesidades educativas especiales. MQRInvestigar, 7(3), 4300-4316. https://doi.org/10.56048/MQR20225.7.3.2023.4300-4316
Christodoulides, P., Miltiadous, A., Tzimourta, K. D., Peschos, D., Ntritsos, G., Zakopoulou, V., Giannakeas, N., Astrakas, L. G., Tsipouras, M. G., Tsamis, K. I., Glavas, E., & Tzallas, A. T. (2022). Classification of EEG signals from young adults with dyslexia combining a Brain Computer Interface device and an Interactive Linguistic Software Tool. Biomedical Signal Processing and Control, 76, 103646. https://doi.org/10.1016/j.bspc.2022.103646
Christoforou, C., Theodorou, M., Fella, A., & Papadopoulos, T. C. (2023a). RAN-related neural-congruency: A machine learning approach toward the study of the neural underpinnings of naming speed. Frontiers in Psychology, 14, 1076501. https://doi.org/10.3389/fpsyg.2023.1076501
Christoforou, C., Theodorou, M., Fella, A., & Papadopoulos, T. C. (2023b). Phonological ability and neural congruency: Phonological loop or more? Clinical Neurophysiology, 156, 228-241. https://doi.org/10.1016/j.clinph.2023.10.015
Corona-González, C. E., Ramos-Flores, M., Alonso-Valerdi, L. M., Ibarra-Zarate, D. I., & Issa-García, V. (2024). Psychophysiological evaluation of the Smartick method in children with reading and mathematical difficulties. Frontiers in Human Neuroscience, 18, 1287544. https://doi.org/10.3389/fnhum.2024.1287544
Cui, Z., Xia, Z., Su, M., Shu, H., & Gong, G. (2016). Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach. Human Brain Mapping, 37(4), 1443-1458. https://doi.org/10.1002/hbm.23112
Diraä, N., Engelen, J., Ghesquière, P., & Neyens, K. (November 9-10, 2009). The use of ICT to support students with dyslexia. In A. Holzinger & K. Miesenberger (Eds.), HCI and Usability for e-Inclusion: 5th Symposium of the Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Computer Society, USAB 2009, (pp. 457-462), Linz, Austria. Springer Berlin Heidelberg.
Doroudi, S. (2023). The intertwined histories of artificial intelligence and education. International Journal of Artificial Intelligence in Education, 33(4), 885-928. https://doi.org/10.1007/s40593-022-00313-2
Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021
Dutt, S., Ahuja, N. J., & Kumar, M. (2022). An intelligent tutoring system architecture based on fuzzy neural network (FNN) for special education of learning disabled learners. Education and Information Technologies, 27(2), 2613-2633. https://doi.org/10.1007/s10639-021-10713-x
El Hmimdi, A. E., Kapoula, Z., & Garnot, V. S. F. (2024). Deep learning-based detection of learning disorders on a large scale dataset of eye movement records. BioMedInformatics, 4(1), 519-541. https://doi.org/10.3390/biomedinformatics4010029
El Hmimdi, A. E., Ward, L. M., Palpanas, T., Garnot, V. S. F., & Kapoula, Z. (2022). Predicting dyslexia in adolescents from eye movements during free painting viewing. Brain Sciences, 12(8), 1031. https://doi.org/10.3390/brainsci12081031
El Hmimdi, A. E., Ward, L. M., Palpanas, T., & Kapoula, Z. (2021). Predicting dyslexia and reading speed in adolescents from eye movements in reading and non-reading tasks: A Machine Learning approach. Brain Sciences, 11(10), 1337. https://doi.org/10.3390/brainsci11101337
Erbeli, F., He, K., Cheek, C., Rice, M., & Qian, X. (2023). Exploring the machine learning paradigm in determining risk for reading disability. Scientific Studies of Reading, 27(1), 5-20. https://doi.org/10.1080/10888438.2022.2115914
Formoso, M. A., Ortiz, A., Martínez-Murcia, F. J., Gallego, N., & Luque, J. L. (2021). Detecting phase-synchrony connectivity anomalies in EEG signals. Application to dyslexia diagnosis. Sensors, 21(21), 7061. https://doi.org/10.3390/s21217061
García, Y., García, B., Saralegui, I., & Fernandez-Ruanova, B. (2014). Automatic classification of dyslexic children by applying machine learning to fMRI images. Bio-Medical Materials and Engineering, 24(6), 2995-3002. https://doi.org/10.3233/BME-141120
Gracheva, M. A., & Shalileh, S. (2023). Dyslexia diagnostics based on eye movements and artificial intelligence methods: A review. Clinical Psychology and Special Education, 12(3), 1-29. https://doi.org/10.17759/cpse.2023120301
Griffin, E., & Pollak, D. (2009). Student experiences of neurodiversity in higher education: Insights from the BRAINHE project. Dyslexia, 15(1), 23-41. https://doi.org/10.1002/dys.383
Guaña-Moya, J., Arteaga-Alcívar, Y., Ilbay-Guaña, E., & Morales, M. B. (2023). Uso de las Tecnologías de la Información y Comunicación para mejorar el aprendizaje de los niños con dislexia. RECIMUNDO, 7(1), 507-514. https://doi.org/10.26820/recimundo/7.(1).enero.2023.507-514
Gutiérrez-Fresneda, R., Díez, A., Pozo-Rico, T., Ramos-Fernández, E., & Verdú-Llorca, V. (2022). Saberes sobre la dislexia y su importancia en el aprendizaje por parte de los estudiantes de mención en pedagogía terapéutica. En R. Satorre (Ed.), El profesorado, eje fundamental de la transformación de la docencia universitaria (pp. 5-14). Octaedro.
Haiech, J. (2020). Parcourir l’histoire de l’intelligence artificielle, pour mieux la définir et la comprendre. Médecine Sciences, 36(10), 919-923. https://doi.org/10.1051/medsci/2020145
Helland, T. (2022). Trends in dyslexia research during the period 1950 to 2020-theories, definitions, and publications. Brain Sciences, 12(10), 1323. https://doi.org/10.3390/brainsci12101323
Johnston, R. B. (2019). Poor education predicts poor health—A challenge unmet by American medicine. National Academy of Medicine.
Jothi, A., Bhargavi, R., & Deepa, B. V. (2023). Prediction of dyslexia severity levels from fixation and saccadic eye movement using machine learning. Biomedical Signal Processing and Control, 79(Part-1), 104094. https://doi.org/10.1016/j.bspc.2022.104094
Jothi, A., Bhargavi, R., & Ramesh, R. (2018). Prediction of dyslexia using support vector machine in distributed environment. International Journal of Engineering & Technology, 7(4), 2795. https://doi.org/10.14419/ijet.v7i4.17222
Jothi, A., & Bhargavi, R. (2019). Prediction of dyslexia from eye movements using machine learning. IETE Journal of Research, 68(2), 814-823. https://doi.org/10.1080/03772063.2019.1622461
Kaisar, S., & Chowdhury, A. (2022). Integrating oversampling and ensemble-based machine learning techniques for an imbalanced dataset in dyslexia screening tests. ICT Express, 8(4), 563-568. https://doi.org/10.1016/j.icte.2022.02.011
Kothapalli, P. K. V., Rathikarani, V., & Nookala, G. K. M. (2023). A constructive model for dyslexia and ADHD prediction using feature learning and boosting approaches. International Journal of Intelligent Systems and Applications in Engineering, 12(2s), 639-649. https://www.ijisae.org/index.php/IJISAE/article/view/3685
Larco, J. M. (2023). Retraso en el desarrollo del lenguaje en niños de nivel inicial en Ecuador. Revista de Ciencias Sociales (Ve), XXIX(E-8), 197-210. https://doi.org/10.31876/rcs.v29i.40947
Liu, F., Wang, H., Zhao, X., & Yu, D. (2024). Small-world properties of eye-movement time series assisted in identifying children at high risk for dyslexia. Biomedical Signal Processing and Control, 93, 106148. https://doi.org/10.1016/j.bspc.2024.106148
Lohvansuu, K., Torppa, M., Ahonen, T., Eklund, K., Hämäläinen, J. A., Leppänen, P. H. T., & Lyytinen, H. (2021). Unveiling the mysteries of dyslexia-lessons learned from the prospective Jyväskylä Longitudinal Study of dyslexia. Brain Sciences, 11(4), 427. https://doi.org/10.3390/brainsci11040427
Macas-Macas, A. D. R., & Guevara-Vizcaíno, C. F. (2020). Uso de herramientas digitales para mejorar la dislexia en estudiantes de Educación Básica. Dominio de las Ciencias, 6(3), 197-218. https://dominiodelasciencias.com/ojs/index.php/es/article/view/1281
Marín, F. (2020). Editorial. Resignificar la praxis educativa en tiempos de incertidumbre: Un desafío para las organizaciones sociales. Revista de Ciencias Sociales (Ve), XXVI(E-2), 9-13. https://doi.org/10.31876/rcs.v26i0.34140
Marín-González, F., Grimaldo-Guerrero, J., Mendoza-Becerra, M., & Senior-Naveda, A. (2020). Mapeo del conocimiento para la enseñanza interdisciplinaria en ingeniería. Formación Universitaria, 13(6), 85-94. http://dx.doi.org/10.4067/S0718-50062020000600085
Martínez-Murcia, F. J., Ortiz, A., Gorriz, J. M., Ramirez, J., Lopez-Abarejo, P. J., Lopez-Zamora, M., & Luque, J. L. (2020). EEG connectivity analysis using denoising autoencoders for the detection of dyslexia. International Journal of Neural Systems, 30(7), 2050037. https://doi.org/10.1142/S0129065720500379
Mat, N. I., Abdul, A. W., & Kamaruddin, N. (2020). Detecting learning disabilities based on neuro-physiological interface of affect (NPIoA). Indonesian Journal of Electrical Engineering and Computer Science, 19(1), 163-170. http://doi.org/10.11591/ijeecs.v19.i1.pp164-171
Modak, M., Ghotane, K., Siddhanth, V., Kelkar, N., Iyer, A., & Prachi, G. (2019). Detection of dyslexia using eye tracking measures. International Journal of Innovative Technology and Exploring Engineering, 8(9S2), 58-61. https://doi.org/10.35940/ijitee.I1011.0789S219
Morciano, G., Alcalde, J. M., Zingoni, A., Yeguas, E., Taborri, J., & Calabrò, G. (2024). Use of recommendation models to provide support to dyslexic students. Expert Systems with Applications, 249(Part-C), 123738. https://doi.org/10.1016/j.eswa.2024.123738
Mpia, D., Ojo, S., & Osunmakinde, I. O. (2013). An intelligent integrative assistive system for dyslexic learners. Journal of Assistive Technologies, 7(3), 172-187. https://doi.org/10.1108/JAT-11-2012-0036
Nandhini, K., & Balasundaram, S. R. (2013). Improving readability through extractive summarization for learners with reading difficulties. Egyptian Informatics Journal, 14(3), 195-204. https://doi.org/10.1016/j.eij.2013.09.001
Nerušil, B., Polec, J., Škunda, J., & Kačur, J. (2021). Eye tracking based dyslexia detection using a holistic approach. Scientific Reports, 11(1), 15687. https://doi.org/10.1038/s41598-021-95275-1
Nilsson, M., Öqvist, G., Ygge, J., Pansell, T., Rydberg, A., & Jacobson, C. (2016). Screening for dyslexia using eye tracking during reading. PloS One, 11(12), e0165508. https://doi.org/10.1371/journal.pone.0165508
Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., …McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. The BMJ, 372, 160. https://doi.org/10.1136/BMJ.N160
Palacios, A. M., Sánchez, L., & Couso, I. (2010). Diagnosis of dyslexia with low quality data with genetic fuzzy systems. International Journal of Approximate Reasoning, 51(8), 993-1009. https://doi.org/10.1016/j.ijar.2010.07.008
Parmar, S., & Paunwala, C. (2023). Early detection of dyslexia based on EEG with novel predictor extraction and selection. Discover Artificial Intelligence, 3, 33. https://doi.org/10.1007/s44163-023-00082-4
Pedroli, E., Padula, P., Guala, A., Meardi, M. T., Riva, G., & Albani, G. (2017). A psychometric tool for a virtual reality rehabilitation approach for dyslexia. Computational and Mathematical Methods in Medicine, 7048676. https://doi.org/10.1155/2017/7048676
Peñalver-Higuera, M. J., Guerra-Castellanos, Y. B., Rodríguez, L. R., & Lopez, R. D. P. (2024). Transformando la educación con Inteligencia Artificial: Hacia un aprendizaje personalizado en la Era 4.0. Revista de Ciencias Sociales (Ve), XXX(4), 416-430. https://doi.org/10.31876/rcs.v30i4.43040
Perera, H., Shiratuddin, M. F., Wong, K. W., & Fullarton, K. (2018). EEG signal analysis of writing and typing between adults with dyslexia and normal controls. International Journal of Interactive Multimedia and Artificial Intelligence, 5(1), 62-67. https://doi.org/10.9781/ijimai.2018.04.005
Platas-García, A., Sánchez, M., & Mayett, R. L. (2023). Dislexia y autoeficacia académica en estudiantes universitarios mexicanos. Cuestiones Pedagógicas, 2(32), 105-120. https://doi.org/10.12795/CP.2023.i32.v2.06
Quisnancela, A. M. (2022). Gamificación como estrategia didáctica para estudiantes con dislexia de EGB superior, en la Escuela de Educación Básica “Fe y Alegría” de la Ciudad de Riobamba [Tesis de maestría, Universidad Nacional de Chimborazo]. http://dspace.unach.edu.ec/bitstream/51000/9783/1/Quisnancela%20Q.%2C%20Ana%20%282022%29%20Gamificacion%20como%20estrategias%20didacticas%20para%20estudiantes%20con%20dislexia.pdf
Rodríguez-Cano, S., Delgado-Benito, V., Ausín-Villaverde, V., & Muñoz-Martín, L. (2021). Design of a virtual reality software to promote the learning of students with dyslexia. Sustainability, 13(15), 8425. https://doi.org/10.3390/su13158425
Rubio, J. (2022). Evaluación de la Calidad de Materiales Didácticos Digitales para alumnado con Dislexia en Educación Primaria [Tesis de pregrado, Universidad de Oviedo]. https://digibuo.uniovi.es/dspace/handle/10651/64313
Sanfilippo, J., Ness, M., Petscher, Y., Rappaport, L., Zuckerman, B., & Gaab, N. (2020). Reintroducing dyslexia: Early identification and implications for pediatric practice. Pediatrics, 146(1), e20193046. https://doi.org/10.1542/peds.2019-3046
Sekhar, S., Chandrashekar, S., & Siddesh, G. M. (2023). Eye movement interpretation for detecting dyslexia using machine learning techniques. International Journal of Computing and Digital Systems, 13(1), 787-794. http://dx.doi.org/10.12785/ijcds/130162
Serna, M. A. (2023). Dislexia en la etapa universitaria: Una mirada desde la lingüística clínica. Revista Médica de Risaralda, 29(1), 9-18. https://doi.org/10.22517/25395203.25236
Seshadri, N. P. G., Agrawal, S., Singh, B. K., Geethanjali, B., Mahesh, V., & Pachori, R. B. (2023). EEG based classification of children with learning disabilities using shallow and deep neural network. Biomedical Signal Processing and Control, 82, 104553. https://doi.org/10.1016/j.bspc.2022.104553
Simón, Á. (18-20 de agosto de 2020). Acompañamiento a un estudiante con dislexia, de la Tecnicatura Universitaria en Programación de la FRGP. Expoingeniería 1era Feria Virtual de Proyectos Tecnológicos, Buenos Aires, Argentina.
Suárez-Rojas, M.-S., Hernández-Ballestas, M.-A., & Orozco-Gutiérrez, M. (2024). Metacomprensión y desarrollo cognitivo en la autorregulación del aprendizaje del adolescente. Cultura Educación y Sociedad, 15(1), e0424675. https://doi.org/10.17981/cultedusoc.15.1.2024.4675
Tamboer, P., Vorst, H. C. M., Ghebreab, S., & Scholte, H. S. (2016). Machine learning and dyslexia: Classification of individual structural neuro-imaging scans of students with and without dyslexia. NeuroImage. Clinical, 11, 508-514. https://doi.org/10.1016/j.nicl.2016.03.014
Tomaz, L., Bianchini, N., Ruiz, D. D., Meneguzzi, F., & Buchweitz, A. (2021). Visual explanation for identification of the brain bases for developmental dyslexia on fMRI data. Frontiers in Computational Neuroscience, 15, 594659. https://doi.org/10.3389/fncom.2021.594659
Vajs, I., Ković, V., Papić, T., Savić, A. M., & Janković, M. M. (2022). Spatiotemporal eye-tracking feature set for improved recognition of dyslexic reading patterns in children. Sensors, 22(13), 4900. https://doi.org/10.3390/s22134900
Vajs, I., Papić, T., Ković, V., Savić, A. M., & Janković, M. M. (2023). Accessible dyslexia detection with real-time reading feedback through robust interpretable eye-tracking features. Brain Sciences, 13(3), 405. https://doi.org/10.3390/brainsci13030405
Vega-Rodríguez, L. Y., & Botero-Suaza, L. E. (2021). Formación profesional inmersa en la transformación digital con el fin de mejorar la calidad en la educación. Cultura Educación Sociedad, 12(1), 37-46. https://doi.org/10.17981/cultedusoc.12.1.2021.03
Vezzoli, Y., Folgieri, R., Vanutelli, M. E., & Lucchiari, C. (2018). How many tests do you need to diagnose Learning Disabilities? Neuropsychological Trends, (23), 67-81. https://doi.org/10.7358/neur-2018-023-lucc
Wang, M., Muthu, B., & Sivaparthipan, C. B. (2022). Smart assistance to dyslexia students using artificial intelligence based augmentative alternative communication. International Journal of Speech Technology, 25(2), 343-353. https://doi.org/10.1007/s10772-021-09921-0
Wolf, M., Gotlieb, R. J. M., Kim, S. A., Pedroza, V., Rhinehart, L. V., Gorno, M. L., & Sears, S. (2024). Towards a dynamic, comprehensive conceptualization of dyslexia. Annals of Dyslexia, 74, 303-324. https://doi.org/10.1007/s11881-023-00297-1
World Health Organization - WHO (2018). Social determinants of health. WHO. https://www.who.int/health-topics/social-determinants-of-health#tab=tab_1
Yang, H. (2022). Effect of story structure instruction based on visual analysis on reading comprehension intervention for dyslexic students. Computational Intelligence and Neuroscience, 9479709. https://doi.org/10.1155/2022/9479709
Yong, C., Dekuan, X., & Xueqiang, L. (2019). Automatically grading text difficulty with multiple features. Data Analysis and Knowledge Discovery, 3(7), 103-112. https://doi.org/10.11925/infotech.2096-3467.2018.1089
Zabkar, J., Urankar, T., Javornik, K., & Košak, M. (2023). Identifying reading fluency in pupils with and without dyslexia using a machine learning model on texts assessed with a readability application. Center for Educational Policy Studies Journal, 13(4), 233-256. https://doi.org/10.26529/cepsj.1367
Zingoni, A., Taborri, J., Panetti, V., Bonechi, S., Aparicio-Martínez, P., Pinzi, S., & Calabrò, G. (2021). Investigating issues and needs of dyslexic students at university: Proof of concept of an artificial intelligence and virtual reality-based supporting platform and preliminary results. Applied Sciences, 11(10), 4624. https://doi.org/10.3390/app11104624
Zuppardo, L., Rodríguez, A., Pirrone, C., & Serrano, F. (2020). Las repercusiones de la dislexia en la autoestima, en el comportamiento socioemocional y en la ansiedad en escolares. Psicología Educativa, 26(2), 175-183. https://doi.org/10.5093/psed2020a4

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.