Nanopartículas que estimulam a produção e a qualidade de frutos de pepino (Cucumis sativus L.)

Palavras-chave: nanopartículas de óxido de silício, quitosana, Cucumis sativus L., qualidade nutracêutica

Resumo

Devido ao alto consumo de pepino (Cucumis sativus L.) e sua importância econômica, é prioritário melhorar a eficiência no uso de recursos para maximizar os rendimentos. A combinação de óxido de silício (SiO2), quitosana e micronutrientes é benéfica para o crescimento e desenvolvimento das plantas. O objetivo deste trabalho foi determinar a influência de nanopartículas de SiO2 dopadas com micronutrientes, encapsuladas em gel de quitosana, no crescimento, produtividade e qualidade de frutos de pepino. Foi desenvolvido em casa de cultura onde foram avaliadas três concentrações de nanopartículas de silício e uma testemunha, em delineamento de blocos casualizados com quatro repetições. Foram feitas avaliações do crescimento das plantas (altura e diâmetro do caule), dias até a floração, número de frutos por planta, produtividade e qualidade dos frutos. A aplicação foliar de Si-NPs promoveu maior crescimento das plantas na maior concentração (2.000 mg.L-1), além de melhorar a qualidade nutracêutica dos frutos de pepino, aumentando os teores de antioxidantes, flavonoides, fenóis e sólidos solúveis totais.

Downloads

Não há dados estatísticos.

Referências

Allard, S.M., Ottesen, A.R., and Micallef, S.A. 2020. Rain induces temporary shifts in epiphytic bacterial communities of cucumber and tomato fruit. Scientific Reports, 10(1), 1765. DOI: https://doi.org/10.1038/s41598-020-58671-7.
Canuto, L., Mendes, G.A., de Oliveiram, M., Araújo, J.L., Trotsk, S., Santos, M.D., Ribeiro, V.G., da Silva, J., Lopes, C., y Queiroga, F. 2021. O papel do silício nas plantas. Research, Society and Development, 10, 7: e3810716247. DOI: https://dx.doi.org/10.33448/rsd-v10i7.16247.
Cázarez-Flores, L.L., Angulo-Castro, A. Vega-Gutiérrez, T.A., Ayala-Tafoya, F., and Aguilar-Quiñonez, J.A. 2023. Producción de tomate en respuesta a dosis de silicio. Ecosistemas y Recursos Agropecuarios 10(3): e3851. DOI: 10.19136/era.a10n3.3851.
Chagas, Y., Herrera, O., y Pereira, E. 2022. Uso da quitosana na agricultura: uma revisão com ênfase na aplicação em sementes. Research, Society and Development, 11(2), e39911225782. DOI: https://dx.doi.org/10.33448/rsd-v11i2.25782.
Erreyes, B., Montoya, J., y Luna-Romero, E. (2023). Rendimiento del cultivo de pepino (Cucumis sativus L.) bajo condiciones de mulch plástico, Ecuador. Revista Científica Agroecosistemas, 11(1), 44-51. https://aes.ucf.edu.cu/index.php/aes/index.
Farouk S (2023). Role of biostimulants in plant’s life cycle. In Biostimulants in Alleviation of Metal Toxicity in Plants (pp. 75-106). Academic Press. DOI: 10.1016/B978-0-323-99600-6.00010-4.
Galindo-Guzmán AP, Fortis-Hernández M, De La Rosa-Reta CV, Zermeño-González H, Galindo-Guzmán L (2022). Síntesis química de nanopartículas de óxido de zinc y su evaluación en plántulas de Lactuca sativa. Revista Mexicana de Ciencias Agrícolas 13: 299-308. https://doi.org/10.29312/remexca.v13i28.3284.
Guillén, R., Zuñiga, L., Ojeda, L., Rivas, T., Trejo, R., y Preciado, P. 2022. Efecto de la nanobiofortificación con hierro en el rendimiento y compuestos bioactivos en pepino. Revista Mexicana de Ciencias Agrícolas, 13(28), 173-184. https://doi.org/10.29312/remexca.v13i28.3272.
Henriquez, C., Aliaga, C., and Lissi, E. 2002. Formation and decay of the ABTS derived radical cation: A comparison of different preparation procedures. International Journal of Chemical Kinetics 34(12):659-665. https://doi.org/10.1002/kin.10094.
Insanu, M., Azkia-Zahra, A, Sabila, N., Silviani, V., Haniffadli, Ariranur., Rizaldy, D., and Fidrianny, I. 2022. Phytochemical and Antioxidant Profile: Cucumber Pulp and Leaves Extracts. Open Access Macedonian Journal of Medical Sciences 10(A):616-622..https://doi.org/10.3889/oamjms.2022.8337.
Jin, W., Li, L., He, W., and Wei, Z. 2024. Application of Silica Nanoparticles Improved the Growth, Yield, and Grain Quality of Two Salt-Tolerant Rice Varieties under Saline Irrigation. Plants, 13, 2452. https:// doi.org/10.3390/plants13172452.
Karamchandani, B.M., S. Dalvi, M. Bagayatkar, I.M. Banat. and S.K. Satpute. 2024. Prospective applications of chitosan and chitosan-based nanoparticles formulations in sustainable agricultural practices. Biocatalysis and Agricultural Biotechnology, 58:103210. https://doi.org/10.1016/j.bcab.2024.103210
Kolbert, Z., Szollosi, R., Rónavári, A., and Molnár, Á. 2022. Nanoforms of essential metals: from hormetic phytoeffects to agricultural potential. Journal of Experimental Botany, 73(6),1825-1840. https://doi.org/10.1093/jxb/erab547.
Kovács, S., Kutasy, E. and Csajbók, J. 2022. The multiple role of silicon nutrition in alleviating environmental stresses in sustainable crop production. Plants, 11(9), 12-23. https://doi.org/10.3390/plants11091223.
Laguna-Estrada, M., Ramírez-Pérez, N.V., Araujo-Rodríguez, J.A. y Rubín-Ramírez, N.N. 2024. Un breve resumen sobre la implementación de los sistemas expertos en problemas de agricultura. Research in Computing Science, 153(9), 239-245. https://rcs.cic.ipn.mx.
Morteza, S., Moharrami, F., Sarikhani, S., and Padervand, M. 2020. Selenium and silica nanostructure based recovery of strawberry plants subjected to drought stress. Scientifc Reports, 10:17672. https://doi.org/10.1038/s41598-020-74273-9.
Navarro-López, N.E., González-Torres, A.M., Pérez-Pérez, A.E., Morales-Mazariego, N., y González-Moscoso, M. 2024. Nanotecnología en la agricultura: Innovación para la producción sostenible de alimentos. Azcatl, 3, 23-27. doi: 10.24275/AZC2024B005
Paris, L., López, H., Medina, R., y Pérez, I. 2021. Efecto de bioestimulantes sobre el crecimiento de la Vainilla Tahitensis en Daule, Ecuador. Revista Científica Ecociencia, 8(6), 1-14. https://doi.org/10.21855/ecociencia.86.570.
Pérez-Velasco, E.A., Betancourt-Galindo, R., Valdez-Aguilar, L.A., González-Fuentes, J.A., Puente-Urbina, B.A., Lozano-Morales, S.A., and Sánchez-Valdés, S. 2020. Effects of the morphology, surface modification and application methods of ZnO-NPs on the growth and biomass of tomato plants. Molecules, 25(6), 1282.DOI:10.3390/ molecules25061282.
Picos-Corrales, L. A., Morales-Burgos, A.M., Ruelas-Leyva, J.P., Crini, G., García-Armenta, E., Jimenez-Lam, S.A., Ayón-Reyna, L.E., Rocha-Alonzo, F., Calderón-Zamora, L., Osuna-Martínez, U., Calderón-Castro, A., De-Paz-Arroyo, G., and Inzunza-Camacho, L.N. 2023. Chitosan as an outstanding polysaccharide improving health-commodities of humans and environmental protection. Polymers 15:526 https://doi.org/10.3390/polym15030526.
Quirino-García, A., Martínez-Alonso, C., Sabino-López, J.E., Espinosa-Rodríguez, M., Vázquez-Villamar, M., y Maldonado-Peralta, M.Á. 2024. Aspersión foliar de nanoestructuras con zinc en plántulas de pepino (Cucumis sativus L.). Ecosistemas y Recursos Agropecuarios IV: e4095. DOI: 10.19136/era.a11nIV.4095.
Rastogi, A., Kumar-Tripathi, D., Yadav S., Kumar-Chauhan, D., and Živčák, M., Ghorbanpour, M., El‑Sheery, N.I., y Brestic, M. 2019. Application of silicon nanoparticles in agriculture, Biotechnology, 3, 9-90. DOI: 10.1007/s13205-019-1626-7.
Reyes-Pérez, J.J., Llerena-Ramos, L.T., Torres-Rodriguez, J.A., Hernández-Montiel, L.G., Macías-Pettao, R.K., Aragón-Sánchez, E., y Palacios-Espinosa, A. 2024. Silicio como bioestimulante en el cultivo del pepino (Cucumis sativus L.). Tropical and Subtropical Agroecosystems, 27, art. 123. https://doi.org/10.56369/tsaes.5359.
Rivera-Fernández, R.D, Pinos, H., Saltos, M., Bósquez, A., Camposano, C., y Verdezoto, C. 2021. Efecto del riego deficitario aplicado en etapa inicial del cultivo de pepino (Cucumis sativus L.) en un suelo franco. Revista Ciencia y Tecnología, 14(1), 55-60. DOI:https://doi.org/10.18779/cyt.v14i1.459.
Rivera-Guetierrez RG, Preciado-Rangel P, Fortiz-Hernández M, Betancourt-Galindo R, Yescas-Coronado P, Orozco-Vidal JA (2021) Nanopartículas de óxido de zinc y su efecto en el rendimiento y calidad de melón. Revista Mexicana de Ciencias Agrícolas 12: 791-803. https://doi.org/10.29312/remexca.v12i5.2987.
Saberi, R., Vatankhah, M., Hassanisaadi, M., and Varma, R.S. 2024. A review of chitosan nanoparticles: Nature's gift for transforming agriculture through smart and effective delivery mechanisms. International Journal of Biological Macromolecules, 60(2):129522. https://doi.org/10.1016/j.ijbiomac.2024.129522.
Sangwan, S., P. Sharma, L. Wati and S. Mehta. 2023. Effect of chitosan nanoparticles on growth and physiology of crop plants. Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management Chapter 4, 99-123. Eds: Azamal Husen. Wolaita Sodo University, Wolaita, Ethiopia. https://doi.org/10.1016/C2021-0-00054-7
Singleton, V.L., Orthofer, R., and Lamuela, R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299:152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
Sun, W., Shahrajabian, M.H., Petropoulos,S.A., and Shahrajabian, N. 2023. Developing Sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants, 12(13), 24-69. DOI: https://doi.org/10.3390/plants12132469
Tejeda-Villagómez, E.A., Hernández-Adame, L., Nieto-Navarro, F., and Anzaldo-Montoya, M. 2023. Nanopartículas de silicio como vehículos de transporte para moléculas de interés agrícola. Mundo Nano, 16(30), 1e-20e. https://doi.org/10.22201/ceiich.24485691e.2023.30.69732.
Tymoszuk A, Wojnarowicz J (2020) Zinc oxide and zinc oxide nanoparticles impact on In vitro germination and seedling growth in Allium Cepa L. Materials 13: 2784. https://doi.org/10.3390/ma13122784.
Ucan-Tucuch, O., Betancourt-Galindo, R., Juárez-Maldonado, A., Sánchez-Vega, M., Sandoval-Rangel, A., y Méndez-López, A. 2023. Efecto de maltodextrinay nanoparticulas de óxido de zinc sobre biomasa y rendimiento en pepino. Ecosistemas y Recursos Agropecuarios, 3, e3699. DOI:10.19136/era.a10nIII.3699.
Velásquez, L., Pirela, L., Chirinos, A., y Avelizapa, I. 2019. Nuevos retos en agricultura para los biopolìmeros de quitina y quitosano. Parte 1: efectos beneficiosos para los cultivos. Revista Iberoamericana de Polímeros, 20(3), 118-136. eviberpol.org/2019/05/01/nuevos-retos-en-agricultura-para-los-biopolimeros-de-quitina-y-quitosano-1-efectos-beneficiosos-para-los-cultivos/
Yan, G., Huang, Q., Zhao, S., Xu, Y., He, Y., Nikolic, M., Nikolic, N., Liang, Y., and Zhu, Z. 2024. Silicon nanoparticles in sustainable agriculture: synthesis, absorption, and plant stress alleviation. Front. Plant Sci. 15:1393458. DOI: 10.3389/fpls.2024.139345.
Zhishen, J., Mengcheng, T., and Jianming, W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food chemistry 64(4):555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
Publicado
2025-09-15
Como Citar
Reyes-Perez, J., Ramos-Remache, R., Jerez , E., Nazareno-Ortiz, R., Murillo-Noboa, K., García- Hernández, J., & Márquez-Guerrero, S. (2025). Nanopartículas que estimulam a produção e a qualidade de frutos de pepino (Cucumis sativus L.). Revista Da Faculdade De Agronomia Da Universidade De Zulia, 42(3), e254243. Obtido de http://www.produccioncientifica.luz.edu.ve/index.php/agronomia/article/view/44427
Secção
Produção Vegetal